
CS152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Spring 2019

Caches and the Memory Hierarchy

Assigned February 13 Problem Set #2 Due Wed, February 27

http://inst.eecs.berkeley.edu/~cs152/sp19

The problem sets are intended to help you learn the material, and we encourage you to
collaborate with other students and to ask questions in discussion sections and office
hours to understand the problems. However, each student must turn in his/her own
solution to the problems.
The problem sets also provide essential background material for the exams. The problem
sets will be graded primarily on an effort basis, but if you do not work through the
problem sets you are unlikely to succeed at the exams! Homework assignments are due
at the beginning of class on the due date. Late homework will not be accepted.

Problem 1: Cache Access-Time & Performance

This problem requires the knowledge of Handout #2 (Cache Implementations at
http://www-inst.eecs.berkeley.edu/~cs152/sp19/handouts/sp19/handout2.pdf) and
Lectures 6 & 7. Please, read these materials before answering the following questions.

Ben is trying to determine the best cache configuration for a new processor. He knows
how to build two kinds of caches: direct-mapped caches and 4-way set-associative
caches. The goal is to find the better cache configuration with the given building blocks.
He wants to know how these two different configurations affect the clock speed and the
cache miss-rate, and choose the one that provides better performance in terms of average
latency for a load.

Problem 1.A Access Time: Direct-Mapped

Now we want to compute the access time of a direct-mapped cache. We use the
implementation shown in Figure H2-A in Handout #2. Assume a 128-KB cache with 8-
word (32-byte) cache lines. The address is 32 bits and byte-addressed, so the two least
significant bits of the address are ignored since a cache access is word-aligned. The data
output is also 32 bits (1 word), and the MUX selects one word out of the eight words in a
cache line. Using the delay equations given in Table 2.1-1, fill in the column for the
direct-mapped (DM) cache in the table. In the equation for the data output driver,
‘associativity’ refers to the associativity of the cache (1 for direct-mapped caches, A for
A-way set-associative caches).

Component Delay equation (ps) DM (ps) SA (ps)
Decoder 20´(# of index bits) + 100 Tag

Data
Memory array 20´ log2 (# of rows) +

20´ log2 (# of bits in a row) + 100
Tag
Data

Comparator 20´(# of tag bits) + 100
N-to-1 MUX 50´log2 N + 100
Buffer driver 200
Data output driver 50´(associativity) + 100
Valid output
driver

100

Table 2.1-1: Delay of each Cache Component

What is the critical path of this direct-mapped cache for a cache read? What is the
access time of the cache (the delay of the critical path)? To compute the access time,
assume that a 2-input gate (AND, OR) delay is 50 ps. If the CPU clock is 1.5 GHz,
how many CPU cycles does a cache access take?

Problem 1.B Access Time: Set-Associative

We also want to investigate the access time of a set-associative cache using the 4-way
set-associative cache in Figure H2-B in Handout #2. Assume the total cache size is still
128-KB (each way is 32-byes), a 4-input gate delay is 100 ps, and all other parameters
(such as the input address, cache line, etc.) are the same as part 2.1.A. Compute the
delay of each component, and fill in the column for a 4-way set-associative cache in
Table 2.1-1.

What is the critical path of the 4-way set-associative cache? What is the access time
of the cache (the delay of the critical path)? What is the main reason that the 4-way
set-associative cache is slower than the direct-mapped cache? If the CPU clock is 1.5
GHz, how many CPU cycles does a cache access take?

Problem 1.C Miss-rate analysis

Now Ben is studying the effect of set-associativity on the cache performance. Since he
now knows the access time of each configuration, he wants to know the miss-rate of each
one. For the miss-rate analysis, Ben is considering two small caches: a direct-mapped
cache with 8 lines with 16 bytes/line, and a 4-way set-associative cache of the same size
and line size. For the set-associative cache, Ben tries out two replacement policies – least
recently used (LRU) and round robin (FIFO).

Ben tests the cache by accessing the following sequence of hexadecimal byte addresses,
starting with empty caches. For simplicity, assume that the addresses are only 12 bits.
Complete the following tables for the direct-mapped cache and both types of 4-way set-
associative caches showing the progression of cache contents as accesses occur (in the
tables, ‘inv’ = invalid, and the column of a particular cache line contains the tag of that
line). Also, for each address calculate the tag and index (which should
help in filling out the table). You only need to fill in elements in the table when a value
changes.

D-map

Address

Addresses and tags are in HEX
line in cache (tag) hit?

L0 L1 L2 L3 L4 L5 L6 L7
110 inv 2 inv inv inv inv inv inv no
136 2 no
202 4 no
1A3
102
361
204
114
1A4
177
301
206
135

 D-map
Total Misses
Total Accesses

4-way

Address

LRU -- addresses and tags are in HEX
line in cache hit?

Set 0 Set 1
way0 way1 Way2 way3 way0 way1 way2 way3

110 Inv Inv Inv inv 8 inv inv inv no
136 9 no
202 10 no
1A3
102
361
204
114
1A4
177
301
206
135

 4-way LRU
Total Misses
Total Accesses

4-way

Address

FIFO -- addresses and tags are in HEX
line in cache (tag) hit?

Set 0 Set 1
way0 way1 way2 way3 way0 way1 way2 way3

110 inv inv inv inv 8 inv inv inv no
136 9 no
202 10 no
1A3
102
361
204
114
1A4
177
301
206
135

 4-way FIFO
Total Misses
Total Accesses

Problem 1.D Average Latency

Assume that the results of the above analysis can represent the average miss-rates of the
direct-mapped and the 4-way set-associative 128-KB caches studied in 1.A and 1.B.
What would be the average memory access latency in CPU cycles for each cache (assume
that the cache miss penalty is 20 cycles)? Which one is better? For the different
replacement policies for the set-associative cache, which one has a smaller cache miss
rate for the address stream in 1.C? Explain why. Is that replacement policy always going
to yield better miss rates? If not, give a counter example using an address stream.

Problem 2: Loop Ordering

This problem requires knowledge of Lecture 7. Please, read it before answering the
following questions.

This problem evaluates the cache performances for different loop orderings. You are
asked to consider the following two loops, written in C, which calculate the sum of the
entries in a 128 by 32 matrix of 32-bit integers:

Loop A Loop B
sum = 0;
for (i = 0; i < 128; i++)
 for (j = 0; j < 32; j++)
 sum += A[i][j];

sum = 0;
for (j = 0; j < 32; j++)
 for (i = 0; i < 128; i++)
 sum += A[i][j];

The matrix A is stored contiguously in memory in row-major order. Row major order
means that elements in the same row of the matrix are adjacent in memory as shown in
the following memory layout:

A[i][j] resides in memory location [4*(32*i + j)]

Memory Location:

0 4 124 128 4*(32*127+31)

A[0][0] A[0][1] ... A[0][31] A[1][0] ... A[127][31]

For Problem 2.A to Problem 2.C, assume that the caches are initially empty. Also,
assume that only accesses to matrix A cause memory references and all other necessary
variables are stored in registers. Instructions are in a separate instruction cache.

Problem 2.A

Consider a 4KB direct-mapped data cache with 8-word (32-byte) cache lines.
Calculate the number of cache misses that will occur when running Loop A.
Calculate the number of cache misses that will occur when running Loop B.

The number of cache misses for Loop A:_____________________________

The number of cache misses for Loop B:_____________________________

Problem 2.B

Consider a direct-mapped data cache with 8-word (32-byte) cache lines. Calculate the
minimum number of cache lines required for the data cache if Loop A is to run without
any cache misses other than compulsory misses. Calculate the minimum number of
cache lines required for the data cache if Loop B is to run without any cache misses other
than compulsory misses.

Data-cache size required for Loop A: ____________________________ cache line(s)

Data-cache size required for Loop B: ____________________________ cache line(s)

Problem 2.C

Consider a 4KB fully-associative data cache with 8-word (32-byte) cache lines. This data
cache uses a first-in/first-out (FIFO) replacement policy.
Calculate the number of cache misses that will occur when running Loop A.
Calculate the number of cache misses that will occur when running Loop B.

The number of cache misses for Loop A:_____________________________

The number of cache misses for Loop B:_____________________________

Problem 3: Microtagged Cache

In this problem, we explore microtagging, a technique to reduce the access time of
set-associative caches. Recall that for associative caches, the tag check must be
completed before load results are returned to the CPU, because the result of the tag check
determines which cache way is selected. Consequently, the tag check is often on the
critical path.

The time to perform the tag check (and, thus, way selection) is determined in large part
by the size of the tag. We can speed up way selection by checking only a subset of the
tag—called a microtag—and using the results of this comparison to select the appropriate
cache way. Of course, the full tag check must also occur to determine if the cache
access is a hit or a miss, but this comparison proceeds in parallel with way selection. We
store the full tags separately from the microtag array.

We will consider the impact of microtagging on a 4-way set-associative 16KB data cache
with 32-byte lines. Addresses are 32 bits long. Microtags are 8 bits long. The baseline
cache (i.e. without microtagging) is depicted in Figure H2-B in the handout 2. Figure 1,
below, shows the modified tag comparison and driver hardware in the microtagged cache.

Problem 3.A Cache Cycle Time

Table 2.4-1, below, contains the delays of the components within the 4-way set-
associative cache, for both the baseline and the microtagged cache. For both
configurations, determine the critical path and the cache access time (i.e., the delay
through the critical path). Fill in the columns for the microtagged cache.

Assume that the 2-input AND gates have a 50ps delay and the 4-input OR gate has a
100ps delay.

Component Delay equation (ps) Baseline Microtagged
Decoder 20´(# of index bits) + 100 Tag 240

Data 240
Memory array 20´log2 (# of rows) +

20´log2 (# of bits in a row) +
100

Tag 369
Data 440
Microtag

Comparator 20´(# of tag bits) + 100 Tag 500
Microtag

N-to-1 MUX 50´log2 N + 100 250 250
Buffer driver 200 200 200
Data output
driver

50´(associativity) + 100 300 300

Valid output
driver

100 100 100

Table 2.4-1: Delay of each Cache Component

What is the old critical path? The old cycle time (in ps)?

What is the new critical path? The new cycle time (in ps)?

Problem 3.B AMAT

Assume temporarily that both the baseline cache and the microtagged cache have the
same hit rate, 95%, and the same average miss penalty, 20 ns. Using the cycle times
computed in 3.A as the hit times, compute the average memory access time for both
caches. What was the old AMAT (in ns)? What is the new AMAT (in ns)?

Problem 3.C Constraints

Microtags add an additional constraint to the cache: in a given cache set, all microtags
must be unique. This constraint is necessary to avoid multiple microtag matches in the
same set, which would prevent the cache from selecting the correct way.

State which of the 3C’s of cache misses this constraint affects. How will the cache
miss rate compare to an ordinary 4-way set-associative cache? How will it compare
to that of a direct-mapped cache of the same size?

Problem 4: Victim Cache Evaluation

Although direct-mapped caches have an advantage of smaller access time than set-
associative caches, they have more conflict misses due to their lack of associativity. In
order to reduce these conflict misses, Norm Jouppi proposed victim caching, where a
small fully-associative back up cache, called a victim cache, is added to a direct-mapped
L1 cache to hold recently evicted cache lines.

The following diagram shows how a victim cache can be added to a direct-mapped
L1 data cache. Upon a data access, the following chain of events takes place:

1. The L1 data cache is checked. If it holds the data requested, the data is returned.
2. If the data is not in the L1 cache, the victim cache is checked. If it holds the data

requested, the data is moved into the L1 cache and sent back to the processor. The
data evicted from the L1 cache is put in the victim cache, and put at the end of the
FIFO replacement queue.

3. If neither of the caches holds the data, it is retrieved from memory, and put in the
L1 cache. If the L1 cache needs to evict old data to make space for the new data,
the old data is put in the victim cache and placed at the end of the FIFO
replacement queue. Any data that needs to be evicted from the victim cache to
make space is written back to memory or discarded, if unmodified.

Note that the two caches are exclusive. That means that the same data cannot be stored in
both L1 and victim caches at the same time.

Problem 4.A Baseline Cache Design

The diagram below shows our victim cache, a 32-Byte fully associative cache with four
8-Byte cache lines. Each line contains of two 4-Byte words and has an associated tag and
two status bits (valid and dirty). The Input Address is 32-bits and the two least significant
bits are assumed to be zero. The output of the cache is a 32-bit word.

Figure 2.5-1: Victim cache datapath

Please complete Table 2.5-1 with delays across each element of the cache. Using the data
you compute in Table 2.5-1, calculate the critical path delay through this cache (from
when the Input Address is set to when both Valid Output Driver and the appropriate Data
Output Driver are outputting valid data).

Component Delay equation (ps) FA(ps)
Comparator 20´(# of tag bits) + 100
N-to-1 MUX 50´log2 N + 100
Buffer driver 200
AND gate 100
OR gate 50´ log2 N + 100
Data output driver 50´(associativity) + 100
Valid output driver 100

Table 2.5-1: Delay of each cache component

Critical Path Cache Delay:

Problem 4.B Victim Cache Behavior

Now we will study the impact of a victim cache on cache hit rate. Our main L1 cache is a
128 byte, direct-mapped cache with 16 bytes per cache line. The cache is word (4-bytes)
addressable. The victim cache in Figure 2.5-1 is a 32-byte fully associative cache with 16
bytes per cache line, and is also word addressable. The victim cache uses the first in first
out (FIFO) replacement policy.

Please complete Table 2.5-2 showing a trace of memory accesses. In the table, each entry
contains the tag of that line, or “inv”, if no data is present. You should only fill in
elements in the table when a value changes. For simplicity, the addresses are only 8 bits.
The first 3 lines of the table have been filled in for you. For your convenience, the
address breakdown for access to the main cache is depicted below.

Input

Address Main Cache (tag) Victim Cache (tag)

 L0 L1 L2 L3 L4 L5 L6 L7 Hit? Way0 Way1 Hit?
 inv inv inv inv inv inv inv inv - inv inv -
0 0 N N
80 1 N 0 N
4 0 N 8 Y

A0
10
C0
18
20
8C
28
AC
38
C4
3C
48
0C
24

Table 2.5-2: Memory access trace

Problem 4.C Average Memory Access Time

Assume 15% of memory accesses are resolved in the victim cache. If retrieving data
from the victim cache takes 5 cycles and retrieving data from main memory takes 55
cycles, by how many cycles does the victim cache improve the average memory access
time?

Problem 5: Three C’s of Cache Misses

Mark whether the following modifications will cause each of the categories to increase, decrease, or whether the modification will
have no effect. You can assume the baseline cache is set associative. Explain your reasoning.

 Compulsory Misses Conflict Misses Capacity Misses

Double the associativity
(capacity and line size constant)

Halving the line size
(associativity and
sets constant)

Doubling the number of sets
(capacity and line size constant)

 Compulsory Misses Conflict Misses Capacity Misses

Adding prefetching

Problem 6: Memory Hierarchy Performance

Mark whether the following modifications will cause each of the categories to increase, decrease, or whether the modification will
have no effect. You can assume the baseline cache is set associative. Explain your reasoning.

 Hit Time Miss Rate Miss Penalty

Double the associativity
(capacity and line size constant)

Halving the line size
(associativity and
sets constant)

Doubling the number of sets
(capacity and line size constant)

Adding prefetching

