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The problem sets are intended to help you learn the material, and we encourage you to 
collaborate with other students and to ask questions in discussion sections and office 
hours to understand the problems. However, each student must turn in his/her own 
solution to the problems. 
The problem sets also provide essential background material for the exams. The problem 
sets will be graded primarily on an effort basis, but if you do not work through the 
problem sets you are unlikely to succeed at the exams!  Homework assignments are due 
at the beginning of class on the due date.  Late homework will not be accepted. 



Problem 1: Cache Access-Time & Performance 
 
This problem requires the knowledge of Handout #2 (Cache Implementations at 
http://www-inst.eecs.berkeley.edu/~cs152/sp19/handouts/sp19/handout2.pdf) and 
Lectures 6 & 7.  Please, read these materials before answering the following questions. 
 
Ben is trying to determine the best cache configuration for a new processor. He knows 
how to build two kinds of caches: direct-mapped caches and 4-way set-associative 
caches. The goal is to find the better cache configuration with the given building blocks.  
He wants to know how these two different configurations affect the clock speed and the 
cache miss-rate, and choose the one that provides better performance in terms of average 
latency for a load.   
 
Problem 1.A Access Time: Direct-Mapped 

 
Now we want to compute the access time of a direct-mapped cache.  We use the 
implementation shown in Figure H2-A in Handout #2. Assume a 128-KB cache with 8-
word (32-byte) cache lines. The address is 32 bits and byte-addressed, so the two least 
significant bits of the address are ignored since a cache access is word-aligned. The data 
output is also 32 bits (1 word), and the MUX selects one word out of the eight words in a 
cache line. Using the delay equations given in Table 2.1-1, fill in the column for the 
direct-mapped (DM) cache in the table. In the equation for the data output driver, 
‘associativity’ refers to the associativity of the cache (1 for direct-mapped caches, A for 
A-way set-associative caches).  
 
 

Component Delay equation (ps)  DM (ps) SA (ps) 
Decoder 20´(# of index bits) + 100 Tag   

Data   
Memory array 20´ log2 (# of rows) +  

20´ log2 (# of bits in a row) + 100 
Tag   
Data   

Comparator 20´(# of tag bits) + 100    
N-to-1 MUX 50´log2 N + 100    
Buffer driver 200    
Data output driver 50´(associativity) + 100    
Valid output 
driver 

100    

 
Table 2.1-1:  Delay of each Cache Component 

 
What is the critical path of this direct-mapped cache for a cache read? What is the 
access time of the cache (the delay of the critical path)? To compute the access time, 
assume that a 2-input gate (AND, OR) delay is 50 ps. If the CPU clock is 1.5 GHz, 
how many CPU cycles does a cache access take?  



 
Problem 1.B Access Time: Set-Associative 

 
We also want to investigate the access time of a set-associative cache using the 4-way 
set-associative cache in Figure H2-B in Handout #2.  Assume the total cache size is still 
128-KB (each way is 32-byes), a 4-input gate delay is 100 ps, and all other parameters 
(such as the input address, cache line, etc.) are the same as part 2.1.A. Compute the 
delay of each component, and fill in the column for a 4-way set-associative cache in 
Table 2.1-1.  
 
What is the critical path of the 4-way set-associative cache? What is the access time 
of the cache (the delay of the critical path)? What is the main reason that the 4-way 
set-associative cache is slower than the direct-mapped cache? If the CPU clock is 1.5 
GHz, how many CPU cycles does a cache access take? 
 
 



 
Problem 1.C Miss-rate analysis 

 
Now Ben is studying the effect of set-associativity on the cache performance. Since he 
now knows the access time of each configuration, he wants to know the miss-rate of each 
one. For the miss-rate analysis, Ben is considering two small caches: a direct-mapped 
cache with 8 lines with 16 bytes/line, and a 4-way set-associative cache of the same size 
and line size.  For the set-associative cache, Ben tries out two replacement policies – least 
recently used (LRU) and round robin (FIFO). 
 
Ben tests the cache by accessing the following sequence of hexadecimal byte addresses, 
starting with empty caches.  For simplicity, assume that the addresses are only 12 bits.  
Complete the following tables for the direct-mapped cache and both types of 4-way set-
associative caches showing the progression of cache contents as accesses occur (in the 
tables, ‘inv’ = invalid, and the column of a particular cache line contains the tag of that 
line). Also, for each address calculate the tag and index (which should  
help in filling out the table). You only need to fill in elements in the table when a value 
changes.  
 

D-map 
 
Address 

Addresses and tags are in HEX 
line in cache (tag) hit? 

L0 L1 L2 L3 L4 L5 L6 L7  
110 inv 2 inv inv inv inv inv inv no 
136    2     no 
202 4        no 
1A3          
102          
361          
204          
114          
1A4          
177          
301          
206          
135          

   
 D-map 
Total Misses  
Total Accesses  
 



 
4-way 

 
Address 

LRU -- addresses and tags are in HEX 
line in cache hit? 

Set 0 Set 1 
way0 way1 Way2 way3 way0 way1 way2 way3  

110 Inv Inv Inv inv 8 inv inv inv no 
136      9   no 
202 10        no 
1A3          
102          
361          
204          
114          
1A4          
177          
301          
206          
135          

 
 4-way LRU 
Total Misses  
Total Accesses  
 
 

4-way 
 
Address 

FIFO -- addresses and tags are in HEX 
line in cache (tag) hit? 

Set 0 Set 1 
way0 way1 way2 way3 way0 way1 way2 way3  

110 inv inv inv inv 8 inv inv inv no 
136      9   no 
202 10        no 
1A3          
102          
361          
204          
114          
1A4          
177          
301          
206          
135          

 
 4-way FIFO 
Total Misses  
Total Accesses  



 
Problem 1.D Average Latency 

 
Assume that the results of the above analysis can represent the average miss-rates of the 
direct-mapped and the 4-way set-associative 128-KB caches studied in 1.A and 1.B. 
What would be the average memory access latency in CPU cycles for each cache (assume 
that the cache miss penalty is 20 cycles)? Which one is better?  For the different 
replacement policies for the set-associative cache, which one has a smaller cache miss 
rate for the address stream in 1.C?  Explain why.  Is that replacement policy always going 
to yield better miss rates? If not, give a counter example using an address stream. 
 



Problem 2: Loop Ordering 
 
This problem requires knowledge of Lecture 7.  Please, read it before answering the 
following questions. 
 
This problem evaluates the cache performances for different loop orderings.  You are 
asked to consider the following two loops, written in C, which calculate the sum of the 
entries in a 128 by 32 matrix of 32-bit integers: 
 

Loop A Loop B 
sum = 0; 
for (i = 0; i < 128; i++) 
  for (j = 0; j < 32; j++) 
    sum += A[i][j]; 

sum = 0; 
for (j = 0; j < 32; j++) 
  for (i = 0; i < 128; i++) 
    sum += A[i][j]; 

 
The matrix A is stored contiguously in memory in row-major order.  Row major order 
means that elements in the same row of the matrix are adjacent in memory as shown in 
the following memory layout: 
 
A[i][j] resides in memory location [4*(32*i + j)] 
 
Memory Location: 
              
0 4   124 128  4*(32*127+31) 

A[0][0] A[0][1] ... A[0][31] A[1][0] ... A[127][31] 
 
For Problem 2.A to Problem 2.C, assume that the caches are initially empty.  Also, 
assume that only accesses to matrix A cause memory references and all other necessary 
variables are stored in registers.  Instructions are in a separate instruction cache.   
 



 
Problem 2.A  

 
Consider a 4KB direct-mapped data cache with 8-word (32-byte) cache lines.   
Calculate the number of cache misses that will occur when running Loop A. 
Calculate the number of cache misses that will occur when running Loop B. 
 

The number of cache misses for Loop A:_____________________________ 

The number of cache misses for Loop B:_____________________________ 
 

Problem 2.B  
 
Consider a direct-mapped data cache with 8-word (32-byte) cache lines.  Calculate the 
minimum number of cache lines required for the data cache if Loop A is to run without 
any cache misses other than compulsory misses.  Calculate the minimum number of 
cache lines required for the data cache if Loop B is to run without any cache misses other 
than compulsory misses. 
 

Data-cache size required for Loop A: ____________________________  cache line(s)  

Data-cache size required for Loop B: ____________________________  cache line(s) 
 

Problem 2.C  
 
Consider a 4KB fully-associative data cache with 8-word (32-byte) cache lines.  This data 
cache uses a first-in/first-out (FIFO) replacement policy. 
Calculate the number of cache misses that will occur when running Loop A.   
Calculate the number of cache misses that will occur when running Loop B.   
 

The number of cache misses for Loop A:_____________________________ 

The number of cache misses for Loop B:_____________________________ 
 
 
 
 
 
 
 
 
 



Problem 3: Microtagged Cache 
  
In this problem, we explore microtagging,  a  technique  to  reduce  the  access  time  of  
set-associative  caches.   Recall that for associative caches, the tag check must be 
completed before load results are returned to the CPU, because the result of the tag check 
determines which cache way is selected.  Consequently, the tag check is often on the 
critical path. 
 
The time to perform the tag check (and, thus, way selection) is determined in large part 
by the size of the tag.   We can speed up way selection by checking only a subset of the 
tag—called a microtag—and using the results of this comparison to select the appropriate 
cache  way.    Of course, the full tag check must also occur to determine if the cache 
access is a hit or a miss, but this comparison proceeds in parallel with way selection.   We 
store the full tags separately from the microtag array. 
 
We will consider the impact of microtagging on a 4-way set-associative 16KB data cache 
with 32-byte lines.   Addresses are 32 bits long.   Microtags are 8 bits long.  The baseline 
cache (i.e. without microtagging) is depicted in Figure H2-B in the handout 2.   Figure 1, 
below, shows the modified tag comparison and driver hardware in the microtagged cache. 
 
 

 
 
Problem 3.A Cache Cycle Time 



 
Table 2.4-1, below, contains the delays of the components within the 4-way set-
associative cache, for both the baseline and the microtagged cache. For both 
configurations, determine the critical path and the cache access time (i.e., the delay 
through the critical path). Fill in the columns for the microtagged cache. 
 
Assume that the 2-input AND gates have a 50ps delay and the 4-input OR gate has a 
100ps delay. 
 

Component Delay equation (ps)  Baseline Microtagged 
Decoder 20´(# of index bits) + 100 Tag 240  

Data 240  
Memory array 20´log2 (# of rows) +  

20´log2 (# of bits in a row) + 
100 

Tag 369  
Data 440  
Microtag   

Comparator 20´(# of tag bits) + 100 Tag 500  
Microtag   

N-to-1 MUX 50´log2 N + 100  250 250 
Buffer driver 200  200 200 
Data output 
driver 

50´(associativity) + 100  300 300 

Valid output 
driver 

100  100 100 

 
Table 2.4-1:  Delay of each Cache Component 

 
 
What is the old critical path? The old cycle time (in ps)? 
 
 
 
What is the new critical path? The new cycle time (in ps)? 
 
 
 
Problem 3.B AMAT 

Assume temporarily that both the baseline cache and the microtagged cache have the 
same hit rate, 95%, and the same average miss penalty, 20 ns.  Using the cycle times 
computed in 3.A as the hit times, compute the  average  memory access  time  for  both  
caches.  What was the old AMAT (in ns)? What is the new AMAT (in ns)? 
 
 
 
 
 



 
Problem 3.C Constraints 

 
Microtags add an additional constraint to the cache: in a given cache set, all microtags 
must be unique.  This constraint is necessary to avoid multiple microtag matches in the 
same set, which would prevent the cache from selecting the correct way. 
 
State which of the 3C’s of cache misses this constraint affects.   How will the cache 
miss rate compare to an ordinary 4-way set-associative cache?   How will it compare 
to that of a direct-mapped cache of the same size? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Problem 4: Victim Cache Evaluation 
  
Although direct-mapped caches have an advantage of smaller access time than set- 
associative caches, they have more conflict misses due to their lack of associativity. In 
order to reduce these conflict misses, Norm  Jouppi proposed victim caching, where a 
small fully-associative back up cache, called a victim cache, is added to a direct-mapped 
L1 cache to hold recently evicted cache lines. 
 
The following diagram  shows  how a  victim  cache  can be  added to  a  direct-mapped 
L1  data cache. Upon a data access, the following chain of events takes place: 
 

 
 

1. The L1 data cache is checked. If it holds the data requested, the data is returned. 
2. If the data is not in the L1 cache, the victim cache is checked. If it holds the data 

requested, the data is moved into the L1 cache and sent back to the processor. The 
data evicted from the L1 cache is put in the victim cache, and put at the end of the 
FIFO replacement queue. 

3. If neither of the caches holds the data, it is retrieved from memory, and put in the 
L1 cache. If the L1 cache needs to evict old data to make space for the new data, 
the old data is put in the victim cache and placed at the end of the FIFO 
replacement queue. Any data that needs to be evicted  from  the  victim  cache  to  
make  space  is  written  back  to  memory or  discarded,  if unmodified. 

 
Note that the two caches are exclusive. That means that the same data cannot be stored in 
both L1 and victim caches at the same time. 
 
 
Problem 4.A Baseline Cache Design 

 
The diagram below shows our victim cache, a 32-Byte fully associative cache with four 
8-Byte cache lines. Each line contains of two 4-Byte words and has an associated tag and 
two status bits (valid and dirty). The Input Address is 32-bits and the two least significant 
bits are assumed to be zero. The output of the cache is a 32-bit word. 
 
 
 



 
Figure 2.5-1: Victim cache datapath 

 
Please complete Table 2.5-1 with delays across each element of the cache. Using the data 
you compute in Table 2.5-1, calculate the critical path delay through this cache (from 
when the Input Address is set to when both Valid Output Driver and the appropriate Data 
Output Driver are outputting valid data). 
 

Component Delay equation (ps) FA(ps) 
Comparator 20´(# of tag bits) + 100  
N-to-1 MUX 50´log2 N + 100  
Buffer driver 200  
AND gate 100  
OR gate 50´ log2 N + 100  
Data output driver 50´(associativity) + 100  
Valid output driver 100  

Table 2.5-1: Delay of each cache component 
 
 
Critical Path Cache Delay: 
 
 
 
Problem 4.B Victim Cache Behavior 

 
Now we will study the impact of a victim cache on cache hit rate. Our main L1 cache is a 
128 byte, direct-mapped cache with 16 bytes per cache line. The cache is word (4-bytes) 
addressable. The victim cache in Figure 2.5-1 is a 32-byte fully associative cache with 16 
bytes per cache line, and is also word addressable. The victim cache uses the first in first 
out (FIFO) replacement policy. 



 
 
Please complete Table 2.5-2 showing a trace of memory accesses. In the table, each entry 
contains the tag of that line, or “inv”, if no data is present. You should only fill in 
elements in the table when a value changes. For simplicity, the addresses are only 8 bits. 
The first 3 lines of the table have been filled in for you.  For your convenience, the 
address breakdown for access to the main cache is depicted below. 

 
Input 

Address Main Cache (tag) Victim Cache (tag) 

 L0 L1 L2 L3 L4 L5 L6 L7 Hit? Way0 Way1 Hit? 
 inv inv inv inv inv inv inv inv - inv inv - 
0 0        N   N 
80 1        N 0  N 
4 0        N 8  Y 

A0             
10             
C0             
18             
20             
8C             
28             
AC             
38             
C4             
3C             
48             
0C             
24             

Table 2.5-2: Memory access trace 
 
Problem 4.C Average Memory Access Time 

 
Assume 15% of memory accesses are resolved in the victim cache. If retrieving data 
from the victim cache takes 5 cycles and retrieving data from main memory takes 55 
cycles, by how many cycles does the victim cache improve the average memory access 
time? 



Problem 5: Three C’s of Cache Misses 
 
Mark whether the following modifications will cause each of the categories to increase, decrease, or whether the modification will 
have no effect.  You can assume the baseline cache is set associative. Explain your reasoning. 
 
 Compulsory Misses Conflict Misses Capacity Misses 
 
 
 
Double the associativity 
(capacity and line size constant) 

   

 
 
Halving the line size 
(associativity and  
# sets constant) 

   

 
 
 
Doubling the number of sets 
(capacity and line size constant) 

   



 
 Compulsory Misses Conflict Misses Capacity Misses 
 
 
 
Adding prefetching 

   

 
 

Problem 6: Memory Hierarchy Performance 
 
Mark whether the following modifications will cause each of the categories to increase, decrease, or whether the modification will 
have no effect.  You can assume the baseline cache is set associative. Explain your reasoning. 
 
 Hit Time Miss Rate Miss Penalty 
 
 
 
Double the associativity 
(capacity and line size constant) 

   



 
 
Halving the line size 
(associativity and  
# sets constant) 

   

 
 
 
Doubling the number of sets 
(capacity and line size constant) 

   

 
 
 
Adding prefetching 

   

 
 
 
 


