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The problem sets are intended to help you learn the material, and we encourage you to collaborate with 
other students and to ask questions in discussion sections and office hours to understand the problems. 
However, each student must turn in his or her own solution to the problems. 

The problem sets also provide essential background material for the quizzes. The problem sets will be 
graded primarily on an effort basis, but if you do not work through the problem sets you are unlikely to 
succeed at the quizzes! We will distribute solutions to the problem sets on the day the problem sets are 
due to give you feedback.  Homework assignments are due at the beginning of class on the due date.  Late 
homework will not be accepted, except for extreme circumstances and with prior arrangement. 
 



Problem 1: Out-of-Order Scheduling 
 
This problem deals with an out-of-order single-issue processor that is based on the basic RISC-V 
pipeline and has a floating-point unit. The FPU has one adder, one multiplier, and one load/store unit. 
The adder has a two-cycle latency and is fully pipelined. The multiplier has a six-cycle latency and is 
fully pipelined. Assume that stores take one cycle and loads take two cycles. 
 
There are 31 writable integer registers (x1-x32) and 32 floating-point registers (f0-f31). To maximize 
number of instructions that can be in the pipeline, register renaming is used. The decode stage can add 
up to one instruction per cycle to the re-order buffer (ROB). The CPU uses a data-in-ROB design, so 
there is one rename register associated with each ROB entry. Functional units write back to the ROB 
upon completion. The functional units share a single write port to the ROB. In the case of a write-back 
conflict, the older instruction writes back first. The instructions are committed in order and only one 
instruction may be committed per cycle. The earliest time an instruction can be committed is one cycle 
after write back. 
 
Floating-point instructions (including loads writing floating-point registers) must spend one cycle in the 
write-back stage before their result can be used. Integer results are available for bypass the next cycle 
after issue and write back two cycles after issue. 
 

 
 
 



For the following questions, we will evaluate the performance of the code segment below. 
 

I1 fld    f1, 0(x1) 

I2 fmul.d f2, f1, f0 

I3 fadd.d f3, f2, f0 

I4 addi   x1, x1, 8 

I5 fld    f1, 0(x1) 

I6 fmul.d f2, f1, f1 

I7 fadd.d f2, f2, f3 
 
 

A) For this part, consider an ideal case where we have an unlimited number of ROB entries.  
 
In the table below, fill in the cycle number for when each instruction enters the ROB, issues, 
writes back, and commits. Also, fill in the new register names for each instruction, where 
applicable. 
 
Since we have an infinite supply of register names, you should use a new register name for each 
register that is written (p0, p1, … ). Keep in mind that after a register has been renamed, 
subsequent instructions that refer to that register must refer to the new register name. 

 
 Time  

OP 
 

Dest 
 

Src1 
 

Src2 Enter ROB Issue WB Commit 
I1 -1 0 2 3 fld p0 x1 - 
I2 0 3 9 10 fmul.d p1 p0 f0 
I3 1    fadd.d    
I4     addi    
I5     fld    
I6     fmul.d    
I7     fadd.d    

 
 
 



B) For this part, consider a more realistic system with a four-entry ROB. An ROB entry can be 
used one cycle after the instruction using it commits. Fill in the table as you did in part A. If the 
instruction uses a source register that has already been retired, use the architectural name of the 
register. 

 

 Time  
OP 

 
Dest 

 
Src1 

 
Src2 Enter ROB Issue WB Commit 

I1 -1 0 2 3 fld p0 x1 - 
I2 0 3 9 10 fmul.d p1 p0 f0 
I3 1    fadd.d    
I4     addi    
I5     fld    
I6     fmul.d    
I7     fadd.d    

 
 
 



Problem 2: Unified Physical Register Files 
 
In this problem, we’ll consider an out-of-order CPU design using a unified physical register file. All of 
the data, both retired and inflight, are kept in the same physical register file. The pipeline contains a 
remap file that is indexed by the architectural register number and stores the physical register number 
the architectural register maps to. The physical register file contains the register data and a bit 
indicating whether the data is valid or not. The pipeline also contains a free list, which is a FIFO queue 
containing the physical register numbers that are not yet mapped to architectural registers. On issue, the 
current mappings of the destination register and two source registers are read from the remap file and 
stored in the ROB. The head of the free list is then popped off and written to the entry for the 
destination architectural register in the remap file. On a branch mispredict or exception, the remap file 
can be restored by going backwards through the ROB and restoring the old physical register mappings. 
 
 
 



A) Consider a system with eight architectural registers, sixteen physical registers, and a four-entry 
ROB. The following table shows the ROB when an exception occurs in the instruction indicated 
in bold. 

 
 ROB PC Arch. Register Old Phys. 

Register 
 0x80001008 x1 p9 

tail -> 0x8000101C x2 p8 
head -> 0x80001010 x6 p5 

 0x80001014 x2 p11 
 

The left column of the following table shows the state of the remap file when the exception is 
detected. Fill out the right column to show the restored state.  

 
Arch 
Reg 

Current State Restored State 

x0 p1  
x1 p6  
x2 p2  
x3 p10  
x4 p7  
x5 p4  
x6 p13  
x7 p15  

 
 



B) When can a physical register be released and put back on the free list? 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C) How many physical registers must there be so that the pipeline never stalls due to lack of 
physical registers in the free list? 
 
 
 



D) Here are some of the initial register mappings and the free list for a RISC-V OoO CPU with a 
unified physical register file containing both integer and floating point registers. 

 
Arch Register Phys Register  Free List 

f0 p5 p6 
f1 p12 p19 
f2 p11 p10 
x2 p8 p21 
x3 p24 p27 
x4 p17  

 
For the following instruction sequence, indicate which physical register gets assigned as the 
destination register and which physical register gets added to the free list on commit. 

 
Instruction Destination Register Freed Register 

fld    f0, 0(x2)   
fld    f1, 0(x3)   
fmul.d f0, f0, f2   
fadd.d f0, f0, f1   
fsd    f0, 0(x4)   
addi   x2, x2, 8   
addi   x3, x3, 8   
addi   x4, x4, 8   

 
 

E) If we wanted to implement register renaming in a superscalar OoO core that can issue two 
instructions per cycle, what would we have to change? 
 
 

 



Problem 3: Pipelining with Branch Prediction 
 
For this question, consider a fully bypassed 5-stage RISC-V processor. We have reproduced the 
pipeline diagram below (bypasses are not shown). Branches are resolved in the Execute Stage, and the 
Fetch Stage always speculates that the next PC is PC+4. For this problem, we will ignore unconditional 
jumps, and only concern ourselves with conditional branches. 

 
A) Fill in the following pipeline diagram using the code segment below. The first two instructions 

have been done for you.  
Throughout this question, make sure you also show instructions that were speculated to be 
executed and then flushed (it would help to mark them explicitly) in the instruction/time 
diagrams, as they also consume pipeline resources. 

0x2000: andi x4, x0, 0x2 

0x2004: addi x5, x0, 0x1 

0x2008: bne  x4, x5, 0x2004  

0x200c: lw   x7, 4(x6)  

0x2010: add  x5, x7, x5  

0x2014: sub  x7, x7, x3  

0x2018: and  x3, x2, x3 

 



PC Instr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 
0x2000 andi F D X M W         
0x2004 addi  F D X M W        
0x2008 bne              

               
               
               
               

 
 
 
 
 

B) As you showed in the first parts of this question, branches in RISC-V can be expensive in a 5-
stage  pipeline. One way to help reduce this branch penalty is to add a Branch History Table 
(BHT) to the processor. This new proposed datapath is shown below: 

 
 

The BHT has been added in the Decode Stage.   The BHT is indexed by the PC register in the 
Decode Stage.  Branch address calculation has been moved to the Decode Stage. This allows 
the processor to redirect the PC if the BHT predicts “Taken”. 
On a BHT mis-prediction, (1) the branch comparison logic in the Execute Stage detects mis-
predicts, (2) kills the appropriates stages, and (3) starts the Instruction Fetch using the correct 
branch target (br_correct).   

Remember: the Fetch Stage is still predicting PC+4 every cycle, unless corrected by either the 
BHT in the Decode Stage(br_predicted) or by the branch logic in the Execute Stage(br_correct).  

Using the code segment below, fill in the following pipeline diagram.    Initially, the BHT 
counters are all initialized to “strongly-taken”. The register x2 is initialized to 0, while the 



register x3 is initialized to 2. The first instruction has been done for you. It is okay if you do not 
use the entire table. 

0x2000: lw   x7, 0(x6) 

0x2004: addi x2, x2, 1  

0x2008: beq  x2, x3, 0x2000  

0x200c: sw   x7, 0(x6)  

0x2010: or   x5, x5, 4  

0x2014: or   x7, x7, 5 

 
 

PC Instr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 
0x2000 lw F D X M W         
0x2004 addi  F D X M W        
0x2008 beq              

               
               
               
               
               

 



C) Unfortunately, while the BHT is an improvement, we still have to wait until we know the 
branch address to act on the BHT’s prediction.   We can solve this by using a two-entry Branch 
Target Buffer (BTB).  

The new pipeline is shown below. For this question, we have removed the BHT and will only 
be using the BTB. 

 
The BTB has been added in the Fetch Stage. The BTB is indexed by the PC register in the Fetch 
Stage. Branch address calculation has been moved back to the Execute Stage. 
On a branch mis-prediction, (1) the branch comparison logic in the Execute Stage detects the 
mis-predict, (2) kills the appropriates  stages, and (3)  starts the Instruction Fetch using the 
correct branch target (br_correct).   

Remember: the Fetch Stage is still predicting PC+4 every cycle, unless either the BTB makes a 
prediction (has a matching and valid entry for the current PC) or the branch logic in the Execute 
Stage corrects for a branch mis-prediction (br_correct). 
Using the code  segment below (the  exact same  code from 4.B),  fill in the  following  pipeline 
diagram. Upon entrance to this code segment, the register x2 is initialized to 0, while the 
register x3 is initialized to 2.   

0x2000: lw   x7, 0(x6) 
0x2004: addi x2, x2, 1  
0x2008: beq  x2, x3, 0x2000  
0x200c: sw   x7, 0(x6)  
0x2010: or   x5, x5, 4  
0x2014: or   x7, x7, 5 

 

 



Initially, the BTB contains: 

 
(For simplicity, the  Tag  is 32-bits, and we  match the  entire  32-bit PC  register  in  the  
Decode Stage to verify a match). It is okay if you do not use the entire instruction/time table.  

 

PC Instr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 
0x2000 lw F D X M W         
0x2004 addi  F D X M W        
0x2008 beq              

               
               
               
               
               

 

 



Problem 4: Load/Store Speculation 

 
A) Suppose we want to execute stores out-of-order. Could there be an issue if we allow stores to 

write to the cache even when there are uncommitted instructions before them in program order? 

 

 
 

 
 

B) Suppose we bypass load values from a speculative store buffer. If the load address hits in both 
the store buffer and the cache, which one should we use: the data forwarded from the store 
buffer or the data from the cache? 

 

 
 

 
 

C) Suppose that we want loads and stores to execute out-of-order with respect to each other. Under 
what circumstances in the code below can we execute instruction 5 before executing any 
others? 

1. add x1, x1, x2 

2. sw  x5, (x2) 

3. lw  x6, (x8) 

4. sw  x5, (x6) 

5. lw  x9, (x3) 

6. add x9, x9, x9 

 
 

 



D) Under what circumstances can we execute instruction 4 in the code above before executing any 
others? 

 

 
 

 
 

 
 

 
E) Now lets assume that we execute instruction 5 before all other instructions, but instruction 5 

causes an exception (e.g., page fault). We want to provide precise exceptions in this processor. 
What happens with instructions 1, 2, 3, 4, and 6 before execution switches to the OS handler? 
What should happen if instructions, 1, 2, 3, or 4 also raise an exception? 

 

 
 

 
 

 
 

F) How can we always be able to execute loads and stores out of order before their addresses are 
known? What is the downside and how is it handled? Specifically, assume that we executed 
instruction 5 before instruction 4, but then realized that |x6 – x3| < 4. 
 



Problem 5: Branch Predictor Accuracy 

 
For this problem, we are interested in the following code: 

 
int array[N] = {…}; 

for (int i = 0; i < N; i++) 

  if (array[i]) 

    array[i]++; 

 
Using the disassembler, we get: 
 

 li   a0, N 
 la   a1, array 
loop: 
 lw   a2, 0(a1) 
 beqz a2, endif 
 addi a2, a2, 1 
 sw   a2, 0(a1) 
endif: 
 addi a0, a0, -1 
 addi a1, a1, 4 
 bnez a0, loop 
 

 
 

 



A) Full BHT 

The processor that this code runs on uses a 512-entry branch history table (BHT), indexed by 
PC [10:2]. Each entry in the BHT contains a 2-bit counter, initialized to the 00 state.  

Each 2-bit counter works as follows: the state of the 2-bit counter decides whether the branch is 
predicted taken or not taken, as shown in the table below. If the branch is actually taken, the 
counter is incremented (e.g., state 00 becomes state 01). If the branch is not taken, the counter is 
decremented. The counter saturates at 00 and 11 (a not-taken branch while in the 00 state keeps 
the 2-bit counter in the 00 state). 

State Prediction 
00 Not taken 
01  Not taken 
10 Taken 
11  Taken 

 

If array = {1,0,-3,2,1}, what is the prediction accuracy for the two branches found in the above 
code for five iterations of the loop, using the 512-entry BHT described above? 
 

 



B) Small BHT 

Now consider a BHT with only a single entry. That is, both branches will share the same 
counter. Now what will the prediction accuracy be for each branch? Assume we are using the 
same array, {1,0,-3,2,1}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

C) Static Hints 

For this question, assume that the compiler can specify statically which way the processor 
should predict the branch will go. If the processor sees a "branch-likely" hint from the compiler, 
it predicts the branch is taken and does NOT update the BHT with this branch (i.e., any 
branches the compiler can analyze do not pollute the BHT).  

Which branches in the program, if any, can the compiler provides hints for? Assume the input 
array for the compiler's test runs varies widely and the compiler must be fairly confident in the 
accuracy of a static branch hint. 

 


