
C152 Laboratory Exercise 4 (Version 1.2)

Professor: Krste Asanović
TA: David Biancolin

Department of Electrical Engineering & Computer Science
University of California, Berkeley

April 5, 2019

Changelog

Version 1.2:

• Update directed section submission: every student should submit their own lab, like previous
labs.

• Update open-ended submission: submit code to the right Gradescope code assignment.

Version 1.1:

• Remove CPI-based “Speed Up” from table.

• Added a link to the v0.4 RVV specification (Chapter 18).

1 Introduction and goals

The goal of this laboratory assignment is to allow you to explore the RISC-V vector ISA using its
functional simulator, Spike. This lab uses an older version of the vector extension (version 0.4, see
Chapter 18 of this PDF 1).

In this lab, you will write RISC-V vector assembly code to gain a better understanding of how
data-level parallel code maps to vector-style processors, and to practice optimizing vector code for a
given implementation. For the open-ended section, you’ll write an optimized vector implementation
for one two kernels: Sparse Matrix-Vector Multiply (SpMV) or radix sort (rsort).

Everyone will do the directed portion the same way, and grades will be assigned based on
correctness. The open-ended portion will allow you to pursue more creative investigations, and
your grade will be based on the effort made to complete the task.

For both the directed portion and the open-ended portion, students can work individually or
in groups of two or three. For the directed section, students are encouraged to discuss solutions
to the lab assignments with their group partners and other groups, but each student must turn in
their own lab report. For the open-ended section, each group will turn in a single lab report. All
submission will be done over Gradescope.

In this lab, there are two open-ended questions but each group need only do one. If you’d like
to do something else, contact your TA or professor with an alternate proposal of significant rigor.

1https://www-inst.eecs.berkeley.edu/ cs152/sp19/handouts/sp19/riscv-spec-rvv-v0p4.pdf

1

https://www-inst.eecs.berkeley.edu/~cs152/sp19/handouts/sp19/riscv-spec-rvv-v0p4.pdf
https://www-inst.eecs.berkeley.edu/~cs152/sp19/handouts/sp19/riscv-spec-rvv-v0p4.pdf

2 Background

2.1 Example: Conditionalized Single-precision A · X Plus B (CSAXPY)

The RISC-V vector ISA programming model is best explained by contrasting it with other, popular
data-parallel assembly programming models. As a running example, we use a conditionalized
SAXPY kernel, CSAXPY. Figure 1 shows CSAXPY expressed in C as both a vectorizable loop
and as a SPMD kernel. CSAXPY takes as input an array of conditions, a scalar a, and vectors x
and y, and then it computes y += ax for the elements for which the condition is true.

1 void csaxpy(size_t n, bool cond[], float a, float x[], float y[])

2 {

3 for (size_t i = 0; i < n; ++i)

4 if (cond[i])

5 y[i] = a*x[i] + y[i];

6 }

(a) vectorizable loop

1 void csaxpy_spmd(size_t n, bool cond[], float a, float x[], float y[])

2 {

3 if (tid < n)

4 if (cond[tid])

5 y[tid] = a*x[tid] + y[tid];

6 }

(b) SPMD kernel

Figure 1: Conditional SAXPY kernel written in C. The SPMD kernel launch code for (b) is
omitted for brevity.

2.2 Packed SIMD Assembly Programming Model

Figure 2 shows CSAXPY kernel mapped to a hypothetical packed SIMD architecture, similar to
Intel’s SSE and AVX extensions. This SIMD architecture has 128-bit registers, each partitioned
into four 32-bit fields. As with other packed SIMD machines, ours cannot mix scalar and vector
operands, so the code begins by filling a SIMD register with copies of a (Line 2). To map a long
vector computation to this architecture, the compiler generates a stripmine loop, each iteration of
which processes one four-element vector. In this example, the stripmine loop consists of a load
from the conditions vector (Line 6), which in turn is used to set a predicate register (Line 7). The
next four instructions (Line 8 - 11), which correspond to the body of the if-statement in Figure 1a,
are masked by the predicate register2. Finally, the address registers are incremented by the SIMD
width (Line 13 - 14), and the stripmine loop is repeated until the computation is finished (Line
15) —almost. Since the loop handles four elements at a time, extra code is needed to handle up

2We treat packed SIMD architectures generously by assuming the support of full predication. This feature is
quite uncommon. Intel’s AVX architecture, for example, only supports predication as of 2015, and then only in its
Xeon line of server processors.

2

1 csaxpy_simd:

2 slli a0 , a0 , 2

3 add a0 , a0 , a3

4 vsplat4 vv0 , a2

5 stripmine_loop:

6 vlb4 vv1 , (a1)

7 vcmpez4 vp0 , vv1

8 !vp0 vlw4 vv1 , (a3)

9 !vp0 vlw4 vv2 , (a4)

10 !vp0 vfma4 vv1 , vv0 , vv1 , vv2

11 !vp0 vsw4 vv1 , (a4)

12 addi a1 , a1 , 4

13 addi a3 , a3 , 16

14 addi a4 , a4 , 16

15 bleu a3 , a0 , stripmine_loop

16 # handle edge cases

17 # when (n % 4) != 0 ...

18 ret

Figure 2: CSAXPY kernel mapped to the packed SIMD assembly programming model.
In all pseudo-assembly examples presented in this section, a0 holds variable n, a1 holds pointer
cond, a2 holds scalar a, a3 holds pointer x, and a4 holds pointer y.

1 csaxpy_simt:

2 mv t0 , tid

3 bgeu t0, a0, skip

4 add t1 , a1 , t0

5 lb t1 , (t1)

6 beqz t1, skip

7 slli t0, t0, 2

8 add a3 , a3 , t0

9 add a4 , a4 , t0

10 lw t1 , (a3)

11 lw t2 , (a4)

12 fma t0 , a2 , t1 , t2

13 sw t0 , (a4)

14 skip:

15 stop

Figure 3: CSAXPY kernel mapped to the SIMT assembly programming model.

3

to three fringe elements. For brevity, we omitted this code; in this case, it suffices to duplicate the
loop body, predicating all of the instructions on whether their index is less than n.

The most important drawback to packed SIMD architectures lurks in the assembly code: the
SIMD width is expressly encoded in the instruction opcodes and memory addressing code. When
the architects of such an ISA wish to increase performance by widening the vectors, they must add
a new set of instructions to process these vectors. This consumes substantial opcode space: for
example, Intel’s newest AVX instructions are as long as 11 bytes. Worse, application code cannot
automatically leverage the widened vectors. In order to take advantage of them, application code
must be recompiled. Conversely, code compiled for wider SIMD registers fails to execute on older
machines with narrower ones.

2.3 SIMT Assembly Programming Model

Figure 3 shows the same code mapped to a hypothetical SIMT architecture, akin to an NVIDIA
GPU. The SIMT architecture exposes the data-parallel execution resources as multiple threads
of execution; each thread executes one element of the vector. One inefficiency of this approach
is that the first action each thread takes is to determine whether it is within bounds, so that
it can conditionally perform no useful work. Another inefficiency results from the duplication
of scalar computation: despite the unit-stride access pattern, each thread explicitly computes its
own addresses. (The SIMD architecture, in contrast, amortized this work over the SIMD width.)
Moreover, massive replication of scalar operands reduces the effective utilization of register file
resources: each thread has its own copy of the three array base addresses and the scalar a. This
represents a threefold increase over the fundamental architectural state.

2.4 Traditional Vector Assembly Programming Model

Packed SIMD and SIMT architectures have a disjoint set of drawbacks: the main limitation of
the former is the static encoding of the vector length, whereas the primary drawback of the latter
is the lack of scalar processing. One can imagine an architecture that has the scalar support
of the former and the dynamism of the latter. One attractive alternative is a traditional vector
architecture, embodied by the Cray-1. The key feature of this architecture is the vector length
register (VLR), which represents the number of vector elements that will be processed by the
vector instructions, up to the hardware vector length (HVL). Software manipulates the VLR by
requesting a certain application vector length (AVL); the vector unit responds with the smaller
of the AVL and the HVL. As with packed SIMD architectures, a stripmine loop iterates until the
application vector has been completely processed. But, as Figure 4 shows, the difference lies in
the manipulation of the VLR at the head of every loop iteration (Line 3). The primary benefits of
this architecture follow directly from this code generation strategy. Most importantly, the scalar
software is completely oblivious to the hardware vector length: the same code executes correctly
and with maximal efficiency on machines with any HVL. Second, there is no fringe code: on the
final trip through the loop, the VLR is simply set to the length of the fringe.

The advantages of traditional vector architectures over the SIMT approach are owed to the
coupled scalar control processor. There is only one copy of the array pointers and of the scalar a.
The address computation instructions execute only once per stripmine loop iteration, rather than
once per element, effectively amortizing their cost by a factor of the HVL.

4

1 csaxpy_tvec:

2 stripmine_loop:

3 vsetvl t0 , a0

4 vlb vv0 , (a1)

5 vcmpez vp0 , vv0

6 !vp0 vlw vv0 , (a3)

7 !vp0 vlw vv1 , (a4)

8 !vp0 vfma vv0 , vv0 , a2, vv1

9 !vp0 vsw vv0 , (a4)

10 add a1 , a1 , t0

11 slli t1 , t0 , 2

12 add a3 , a3 , t1

13 add a4 , a4 , t1

14 sub a0 , a0 , t0

15 bnez a0 , stripmine_loop

16 ret

Figure 4: CSAXPY kernel mapped to the traditional vector assembly programming
model.

Figure 5: The programmer’s view of a traditional vector processor.

Figure 5 shows a diagram of the programmer’s view of a traditional vector processor. The vector
processor is composed of a control processor and a vector of microthreads. The control processor
fetches, decodes, and executes regular scalar code. It also fetches and decodes vector instructions,
translating and sending the appropriate vector commands to an attached vector unit, which is
conceptually composed on a vector of microthreads.

A typical sequence of traditional vector assembly code is shown on the right half of Figure 5.

2.5 RISC-V Vector ISA

One killer feature of the RISC-V Vector ISA compared to the traditional vector machine is poly-
morphic vector types. We can load scalar, vector, or matrix values of different types (e.g. integer or
floating point with different widths) on vector registers. By setting configurations for each vector
register, we can use the same instruction for the same operation on different shapes and types. For

5

1 csaxpy_tvec:

2 # configuration:

3 # v0: scalar int width 8 bits

4 # v1: vector int width 8 bits (vector masks)

5 # v2: vector int width 8 bits

6 # v3: scalar float with 32 bits

7 # v4 -v5: vector float with 32 bits

8 setvcfg(vcfg0 ,

9 SCALAR | INT | W8 ,

10 VECTOR | INT | W8 ,

11 VECTOR | INT | W8 ,

12 SCALAR | FP | W32)

13 setvcfg(vcfg2 , \

14 VECTOR | FP | W32 , \

15 VECTOR | FP | W32 , \

16 0, 0)

17 stripmine_loop:

18 setvl(t0 , a0)

19 vinsert v0 , x0 , x0 # v0[0] = 0

20 vld v2 , 0(a1) # load cond[i]

21 vsne v1, v2, v0 # set if cond[i] != 0

22 vinsert v3 , a2 , x0 # v2[0] = a

23 vld v4 , 0(a3), v1t # load x[i] if cond[i] != 0

24 vld v5 , 0(a4), v1t # load y[i] if cond[i] != 0

25 vmadd v5 , v3 , v4 , v5 , v1t # y[i] = a * x[i] + y[i] if cond[i] != 0

26 vst v5 , 0(a4), v1t # store y[i] if cond[i] != 0

27 add a1 , a1 , t0 # bump cond

28 sll t1 , t0 , 2 # byte offset

29 add a3 , a3 , t1 # bump x

30 add a4 , a4 , t1 # bump y

31 sub a0 , a0 , t0 # decrement n

32 bnez a0, stripmine_loop # loop

33 ret

Figure 6: CSAXPY kernel mapped to the RISC-V Vector ISA.

6

example, we can use vadd for the addition on two integer vectors, or the addition on a floating-point
scalar and a floating-point vector.

Figure 6 shows the CSAXPY kernel implemented with the RISC-V Vector ISA. Not that there
is no separate vector predicate registers. Instead, v1 serves as a predicate register for vector masks,
which can be set by vseq, vsne, vslt, or vsge. By annotating each instruction with v1t (or v1f)
(Line 23 – 26), the instructions are executed conditionally in case the LSBs of each element in v1

are one (or zero).

2.6 Graded Items

You will turn in a digital copy of your lab over gradescope. Please label each section of the results
clearly. The following items need to be turned in for evaluation:

1. (Directed) Problem 3.3: Compare vectorized CSAXPY (vec-scaxpy) against scalar CSAXPY
(csaxpy).

2. (Directed) Problem 3.4: Implement vectorized Single-precision GEneralized Matrix-Vector
multiply (vec-sgemv).

3. (Directed) Problem 3.5: Implement vectorized Double-precision GEneralized Matrix Multiply
(vec-dgemm).

4. (Directed) Problem 3.6: Implement vectorized Complex Multiply (vec-cmplxmult).

5. (Directed) Problem 3.7: implement vectorized Index of MAX (vec-imax).

6. (Open-ended) Problem 4.2: implement and optimize vectorized Sparse Matrix Multiply
(vec-spmv).

7. (Open-ended) Problem 4.3: implement and optimize vectorized Radix Sort (vec-rsort).

Also, you are supposed to complete the following table for each question:

csaxpy sgemv dgemm cmplxmult imax

Scalar (CPI)

Scalar (FLOPs/cycle)

Vector (CPI)

Vector (FLOPs/cycle)

Speedup (FLOPs/cycle)

Table 1: Performance of Floating-point Benchmarks.

Your directed and open-ended reports must not exceed 10 pages, each, excluding front matter.
Submissions that exceed this length will be penalized 1 point.

7

3 Directed Portion (3 Points)

3.1 General Methodology

This lab will focus on writing code for vector machines with the RISC-V Vector ISA. This will
be done in two steps: 1) write RISC-V Vector assembly code for each benchmark, and 2) test its
correctness and estimate its performance using the RISC-V ISA simulator, Spike.

Spike is a functional simulator, which does not compute the performance of program execution.
However, in this lab, a simple timing model is introduced with the following assumptions:

• Single-issue, in-order scalar processor

• Vector processor with 8 elements and 8 lanes

• Perfect branch prediction.

• ALU: latency = 1 cycle.

• FPU: latency = 4 cycles, fully-pipelined

• L1 data cache: latency = 3 cycles, size = 32KiB, line size = 64 Bytes, fully-pipelined

• Main memory: latency = 20 cycles

Because all functional units are fully-pipelined, instructions can be issued every cycle when
there is no data dependency. However, the processor needs to stall when instructions cannot be
issued due to data dependencies or cache misses.

3.2 Setting Up Your Workspace

To complete this lab you will log in to an instructional server (icluster6-9.eecs.berkeley.edu).
First, clone the lab repo and move to the benchmark directory:

inst$ cd ~

inst$ source ~cs152/sp19/cs152.lab4.bashrc # Can be added to ~/.bash_profile

inst$ git clone ~cs152/sp19/lab4.git

inst$ cd lab4/benchmarks

Also, for a new release, you can pull it in with:

inst$ cd ${LAB4ROOT}

inst$ git pull origin master

Run make to generate binaries and disassembly dump files for all benchmarks, and run make

run to execute all the benchmarks in Spike, which will fail for unimplemented benchmarks for now.
You can also run the following commands for each benchmark:

inst$ make <benchmark>.riscv # compile the binary for <benchmark>

inst$ make <benchmark>.riscv.dump # generate disassembly for <benchmark>

inst$ make <benchmark>.riscv.out # commit log trace for <benchmark>

Note that <benchmark>.riscv.out contains commit log traces, which is useful for debugging
your code when it fails (See Appendix A for more information about debugging.)

8

3.3 Comparing vectorized CSAXPY(vec-csaxpy) against scalar CSAXPY(csaxpy)

For this question, you will compare the performance of vectorized CSAXPY(vec-csaxpy) against
that of scalar CSAXPY(csaxpy). First, run csaxpy with the following command:

inst$ make csaxpy.riscv.out

spike --isa=rv64gcv --dc=128:4:64 -l csaxpy.riscv 2> csaxpy.riscv.out

cycles = ...

instructions = ...

FLOPs = ...

D$ accesses = ...

D$ misses = ...

It will execute csaxpy.riscv in Spike, report the performance stats, and dump the commit log
trace to csaxpy.riscv.out.

Next, run simulation for vector CSAXPY:

inst$ make vec-csaxpy.riscv.out

spike --isa=rv64gcv --dc=128:4:64 -l vec-csaxpy.riscv 2> vec-csaxpy.riscv.out

cycles = ...

instructions = ...

FLOPs = ...

D$ accesses = ...

D$ misses = ...

Collect your results and fill out the column of csaxpy in Table 1. Compute each row with the
following formulas:

• CPI = cycles / instructions

• FLOPs/cycle = FLOPs / cycles

• Speedup = performance of vectorized version / performance of scalar version

In your report, explain the performance difference between the two implementations. Make
reference to the source and each implementation’s commit log as necessary to support your expla-
nation.

3.4 Vectorizing Double precision GEneralized Matrix-Vector multiply (dgemv)

Now that you understand the infrastructure, how to run benchmarks, and how to collect results,
you can write your own benchmark and measure its performance.

For Problem 3.4, you will vectorize Double Precision Generalized Matrix-Vector Multiply (dgemv),
which is a fundamental kernel for scientific computing (Basic Linear Algebra Subprogram (BLAS)
Level 2). Its (unoptimized) pseudo-code is shown below:

9

1 // pseudo code

2 for (i = 0 ; i < m ; i++)

3 {

4 y[i] = 0.0;

5 for (j = 0 ; j < n ; j++)

6 {

7 y[i] += A[i][j] * x[j];

8 }

9 }

The scalar version is provided in $LAB4ROOT/benchmarks/dgemv. To measure its performance,
run:

inst$ cd ${LAB4ROOT}/benchmarks

inst$ make dgemv.riscv.out

Your goal is to vectorize the inner loop of dgemv in $LAB4ROOT/benchmarks/vec-dgemv/

vec-dgemv-inner.S. There are blanks (TODOs) for vector instructions as well as a brief description
of the RISC-V ABI calling convention (which provides suggestions on which registers to use).

When you are ready to test your code, run it on the ISA simulator

inst$ cd ${LAB4ROOT}/benchmarks

inst$ make vec-dgemv.riscv.out

If no errors are reported, you’re done! Collect your results from the simulations and fill out the
corresponding entries in Table 1.

Hints: you need to do a reduction for this question. For this, you may find the following
instruction to be particularly handy.

• vslide vd, vs1, rs2

vd[i] := 0 ≤ (rs2) + i < VL ? vs1[(rs2) + i] : 0.

In your report, provide only snippet of code you wrote, explain the performance difference
between the scalar and your vector implementation.

3.5 Vectorizing Double precision GEneralized Matrix-Matrix multiply (dgemm)

For Problem 3.5, you will vectorize Double Precision Generalized Matrix Multiply (dgemm), which
is another fundamental kernel for scientific computing and machine learning (BLAS Level 3). Its
unoptimized pseudo-code is shown below:

1 // pseudo code

2 for (i = 0 ; i < n ; i++)

3 for (j = 0 ; j < n ; j++)

4 for (k = 0 ; k < n ; k++)

5 C[i][j] += A[i][k] * B[k][j];

The optimized scalar version is provided in $LAB4ROOT/benchmarks/dgemm. Note how loop
unrolling and blocking are used to improve the sequential code. Also, we should handle remainders
due to loop unrolling at the end.

To measure its performance, run:

10

inst$ cd ${LAB4ROOT}/benchmarks

inst$ make dgemm.riscv.out

The goal is to vectorize the main loop and the remainder loop of the optimized code in
$LAB4ROOT/benchmarks/dgemm/{vec-dgemm-inner, vec-dgemm-remainder}.S, respectively. For
the main loop, there are blanks for vector instructions in the file. For the remainder loop, the file
is almost empty, but it must be similar to and simpler than the main loop. This problem must be
a good practice for the open-ended portion.

When you are ready to test your code, run it on the ISA simulator

inst$ cd ${LAB4ROOT}/benchmarks

inst$ make vec-dgemm.riscv.out

When your executes correctly, collect your results from the simulations and fill out the corre-
sponding entries in Table 1.

In your report, provide only snippet of code you wrote, explain the performance difference
between the scalar and your vector implementation.

3.6 Vectorizing Complex Multiply (complxmult)

For Problem 3.6, you will vectorize Complex Multiply (cmplxmult). Complex multiply involves
multiplying two vectors of complex numbers together element-wise. The pseudo-code is shown
below:

1 // pseudo code

2 for (i = 0; i < n; i++)

3 {

4 e = (a*b) - (c*d);

5 f = (c*b) + (a*d);

6 }

In terms of calculating FLOPs, each iteration involves four FP multiplies and two FP adds, for a
total of six FLOPs per iteration. The actual C code, found in $LAB4ROOT/benchmarks/cmplxmult,
is shown here:

11

1 struct Complex

2 {

3 float real;

4 float imag;

5 };

6

7 // scalar C implementation

8 void cmplxmult(int n, struct Complex a[], struct Complex b[],

struct Complex c[])

9 {

10 int i;

11 for (i = 0; i < n; i++)

12 {

13 c[i].real = (a[i].real * b[i].real) - (a[i].imag * b[i].imag);

14 c[i].imag = (a[i].imag * b[i].real) + (a[i].real * b[i].imag);

15 }

16 }

Add your RISC-V Vector code to $LAB4ROOT/benchmarks/vec-cmplxmult/cmplxmult.S. You
will find empty lines for vector instructions in the file, as well as a brief description of the RISC-V
ABI calling convention (which provides suggestions on which registers to use).

When you are ready to test your code, much like before, run it on the ISA simulator:

inst$ cd ${LAB4ROOT}/benchmarks

inst$ make vec-cmplxmult.riscv.out

Also, to compare it against its scalar version, run:

inst$ cd ${LAB4ROOT}/benchmarks

inst$ make cmplxmult.riscv.out

Collect your results from simulations and fill out the corresponding entries in Table 1.
Hints: You will probably want to work with strided vector memory operations for this problem.

For a strided vector load, see:

• vlds vd, offset(rs1), rs2.

The integer register rs1 holds the base address of the starting address for the vector strided loads
and offset, which is in general 0, is the offset of the starting address. The integer register rs2

holds the size of the stride. Because this problem involves vectors of structs, and each complex
number struct is 8 bytes in size, trying to load a vector of the real parts of the complex numbers
will involve a stride value of 8 (bytes). The corresponding store version is:

• vsts vs3, offset(rs1), rs2.

Although not necessary, you may also get higher performance by using “fused multiply add/sub”
instructions, which are also shown in CSAXPY (Line 25 in Figure 6). These instructions allow two
vector operations to be issued in a single cycle, doubling floating point performance! Here is the
list:

12

• vmadd vd, vs1, vs2, vs3

vd[i] := vs1[i] * vs2[i] + vs3[i]

• vmsub vd, vs1, vs2, vs3

vd[i] := vs1[i] * vs2[i] - vs3[i]

• vnmadd vd, vs1, vs2, vs3

vd[i] := -(vs1[i] * vs2[i] + vs3[i])

• vnmsub vd, vs1, vs2, vs3

vd[i] := -(vs1[i] * vs2[i] - vs3[i])

In your report, provide only snippet of code you wrote, explain the performance difference
between the scalar and your vector implementation.

3.7 Vectorizing Index of MAX (imax)

For Problem 3.7, you will vectorize a non traditional vector application, imax, which finds the index
of the max. The pseudo-code is as follows:

1 // pseudo code

2 idx = 0, max = 0.0;

3 for (i = 0 ; i < n ; i++)

4 {

5 if (l[i] > max) {

6 max = l[i];

7 idx = i;

8 }

9 }

At a first glance, this looks fairly innocuous. Its scalar, floating-point implementation is pro-
vided in $LAB4ROOT/benchmarks/imax. Figure out how floating-point comparisons and fmax/fmin
are used from its disassembly (imax.riscv.dump). Measure its performance with the following
command:

inst$ cd ${LAB4ROOT}/benchmarks

inst$ make imax.riscv.out

Fill out TODOs in $LAB4ROOT/benchmarks/vec-imax/imax.S. When ready to test your code,
run:

inst$ cd ${LAB4ROOT}/benchmarks

inst$ make vec-imax.riscv.out

Collect your results from simulations and fill out the corresponding entries in Table 1.
Hints: Despite the simplicity of the scalar implementation, vectorizing imax is not trivial. We

suggest you do the following:

1. Keep the current max value to a scalar vector register, which is initialized zero. (For its
explanation, refer to Appendix B.) Also, keep the current index in a scalar register whose
initial value is zero.

13

2. Load a vector and find its max with reduction. You may want to use vslide and vmax.

3. Find the max among the current max and the result from Step 2.

4. Set the element whose value is equal to the new max from Step 3.

5. Find the index of the max in the vector using:
vmfirst rd, vs1

(rd) := ([i for i in range(0, VL) if LSB(vs1[i]) == 1] + [-1])[0]

Thus, vmfirst finds the index of the first non-zero LSB element in a vector if any, but returns
-1 otherwise.

6. Update the global index if necessary.

In your report, provide only snippet of code you wrote, explain the performance difference
between the scalar and your vector implementation.

4 Open-ended Portion (7 points + 2 extra points)

For this lab, there are two open-ended questions. Each open-ended group (one, two, or three
students) should select one. These are contest-based questions: the group providing the highest
performance implementation of their selected open-ended problem will receive two extra points,
runners-up will receive one. Groups are free to try both, but will only be eligible for bonus points
on the problem they select (and write about in their report).

4.1 Learning Objectives; Rubric; Submission

In writing your optimized implementation and describing that implementation your report, we want
you to demonstrate your understanding of vector architectures, the sources of their performance
advantages, and how these qualities can be employed in important kernels.

We provide the following coarse rubric to help guide your effort:

1. (1 point) Report: provide your implementation, explain roughly how it works, and report
its performance.

2. (3 points) Report: explain how you arrived at your implementation, calling out the three
largest optimizations you made. How much improvement did they yeild over the previous
iteration of your code? Why? If you can’t call out three optimizations, for half-credit,
replace each one with an example of an optimization you tried that wasn’t as effective as you
expected. Why didn’t it improve your implementation’s performance?

3. (-1 points) Report: length exceeds 10 pages.

4. (1 point) Implementation: awarded for a correct implementation that outperforms the scalar
code.

5. (2 point) Implementation: awarded based on the performance of your implementation versus
the TA’s partially optimized implementation. You’ll receive two points for beating it (¡ 500000
cycles), and if not, one point for coming within 50% of it (¡ 750000).

14

You will submit your report digitally over Gradescope. You will submit your code (either
vec-rsort.S or vec-spmv.S) to the appropriate code assignment on Gradescope: the autograder
will provide the the implementation score (out of three, see above) for the open-ended section. Do
not email the TA your code.

4.2 Contest: Vectorizing and Optimizing Sparse Matrix-Vector multiply (SpMV)

For this problem, you will implement a RISC-V Vector version of sparse matrix-vector multiply
(SpMV), which is extensively used for graph processing and machine learning. Unlike other dense
linear algebra algorithms, most elements of the matrix are zero, which are condensed in the memory.
SpMV computes y = Ax, where A is sparse while x is dense. Its unoptimized pseudo-code is as
follows:

1 // pseudo code

2 for (i <- 0 until (p.size - 1))

3 {

4 y[i] = 0.0;

5 for (k <- p(i) until p(i+1)) {

6 y[i] += A[k] * x[idx[k]];

7 }

8 }

A scalar implementation written in C can be found in ${LAB4ROOT}/benchmarks/spmv/spmv_main.c.
To measure its performance, run:

inst$ cd ${LAB4ROOT}/benchmarks

inst$ make spmv.riscv.out

Add your own vector implementation in ${LAB4ROOT}/benchmarks/ vec-spmv/vec-spmv.S.
When you are ready to test your code, run it on the ISA simulator:

inst$ cd ${LAB4ROOT}/benchmarks

inst$ make vec-spmv.riscv.out

Once your code is correct, do your best to optimize spmv. The team whose implementation
executes correctly in the fewest number of cycles will receive two bonus points, and the runners-up
will receive one.

You are only allowed to write code in the vec-spmv function (i.e., do not change any code in
the vec-spmv.c file). If you would like to do some transformation on the inputs please only do this
after you have done the non-transformed version.

Collect your results from simulations and fill out the corresponding entries in Table 1.

SpMV Hints

Common techniques that generally work well are loop unrolling, lifting loads out of inner loops and
scheduling them earlier, blocking the code to utilize the full register file, transposing matrices to
achieve unit-stride accesses to make full use of the data cache lines, and loop interchange.

More specific to vector processors, try and have all element loads be re-factored into vector loads.
Use fused multiply-add instructions as often as possible. Also, carefully choose which loop(s) you
decide to vectorize for this problem: not all loops can be safely vectorized!

15

4.3 Contest: Vectorizing and Optimizing Radix Sort (rsort))

For this problem, you will implement a RISC-V Vector version of Radix Sort (rsort), which is a
non-comparative sorting algorithm. In iteration i, each element is assigned to a bucket by its i’th
digit from LSB. After all elements are allocated to buckets, they are merged sequentially to the
list. This algorithm repeats until all the digits in every element are looked up. Its unoptimized
pseudo-code is shown below:

1 // pseudo code

2 // MAXVAL: the max value of the type

3 while (BASE ** i <= MAXVAL) {

4 // Number of buckets = BASE

5 for (k = 0 ; k < BASE ; k++) {

6 buckets[k] = [];

7 }

8 for (j = 0 ; j < size(array) ; j++) {

9 number = array[j];

10 // Compute the i’th digit from LSB

11 digit = (number / (BASE ** i)) % BASE;

12 // Assign number to a bucket

13 buckets[digit]. append(number);

14 }

15 // Merge buckets sequentially

16 new_array = []

17 for (k = 0 ; k < BASE ; k++) {

18 new_array += bucket[k];

19 }

20 array = new_array;

21 i++;

22 }

A scalar implementation written in C can be found in ${LAB4ROOT}/benchmarks/ rsort/rsort.c

To measure its performance, run:

inst$ cd ${LAB4ROOT}/benchmarks

inst$ make rsort.riscv.out

When you are ready to test your code, run it on the ISA simulator

inst$ cd ${LAB4ROOT}/benchmarks

inst$ make vec-rsort.riscv.out

Once your code is correct, do your best to optimize rsort. The team whose implementation
executes correctly in the fewest number of cycles will receive two bonus points, and the runners-up
will receive one.

You are only allowed to write code in the vec_rsort function (i.e., do not change any code in
the vec-rsort.c file). If you would like to do some transformation on the inputs please only do
this after you have done the non-transformed version.

Collect your results from simulations. There are no FLOPs with rsort. so fill out CPIs only in
Table 1. In your report, describe what your code does, and some of the strategies that you tried.

16

Radix Sort Hints

You can feel that getting correctly-working code is very challenging. Therefore, do not consider
performance optimization when you just kicked it off. You will heavily use gather/scatter as well
as vector masks for this benchmark. Be careful when you update buckets as we may read the same
bucket multiple times in a single vector! Thus, you should do a correct reduction on each vector.
You will rely on not only vslide, vmfirst, but also:

• vmpop rd, vs1

(rd) := len([i for i in range(0, VL) if LSB(vs1[i]) == 1])

General tips for SpMV can also be useful for rsort. Your code may have vrem, which burns a
lot of CPU cycles (10 cycles in this lab), so use another instruction. You may also notice that all
buckets can fit in a single vector, so can you keep buckets in a vector across the iteration?

5 The Third Portion: Feedback

As usual, we’d like your feedback. Please fill out the survey at https://forms.gle/kn8HXnym5ajgmA8B8.
How many hours did the directed portion take you? How many hours did you spend on the

open-ended portion? Was this lab boring? Did you learn anything? Is there anything you would
change? Feel free to write as little or as much as you want.

6 Acknowledgments

This lab was originally designed by Donggyu Kim in spring 2018. It is heavily inspired by the previ-
ous sets of CS 152 labs (which targeted the Hwacha vector processor [1]) developed by Christopher
Celio. This lab was also made possible through the work of Colin Schmidt in helping make the
RISC-V tool-chain available for the RISC-V Vector ISA.

A Appendix: Debugging

Debugging your vector code can be difficult. To make matters worse, you do not have an OS to
call upon, gdb, or printf. However, there are a couple of strategies that will help.

First, some simple printing functions are provided: printstr() and printhex(). These func-
tions, found in ${LAB4ROOT}/riscv-asmtests-bmarks/riscv-bmarks/stuff/syscalls.cc, allow
you to print out a static string and an integer value respectively. This can allow you to check con-
ditions and print out the appropriate strings from your code. This is an example to print the value
v0[1]:

preserve ra, a0-a3

addi sp, sp, -40

sd ra, 32(sp)

sd a0, 24(sp)

sd a1, 16(sp)

sd a2, 8(sp)

sd a3, 0(sp)

17

https://forms.gle/kn8HXnym5ajgmA8B8

get v0[1] and convert it to int

a0 = argument for printhex

li a0, 1

vextract a0, v0, a0

mv a single/double precision value to a fp register

fmv.[s|d].x f0, a0

convert a single/double value to an integer value

fcvt.l.[s|d] a0, f0

call printhex

jal printhex

recover ra, a0-a3

ld ra, 32(sp)

ld a0, 24(sp)

ld a1, 16(sp)

ld a2, 8(sp)

ld a3, 0(sp)

addi sp, sp, 40

Second, the ISA simulator prints out an instruction trace found in ${LAB4ROOT}/benchmarks/*.riscv.out,
from which, you can figure out what values each vector instruction writes to vector registers.

The objdump of the RISC-V binaries can be found in ${LAB4ROOT}/benchmarks/*.riscv.dump,
which can be very useful for comparing with the instruction traces and verifying that the code you
wrote was correctly translated by the compiler.

Finally, it can be very helpful to use a small set of data for debugging. Use a test input for
each benchmark, or generate it using the scripts. However, make sure your code can run with
dataset1.h.

B Appendix: RISC-V Vector Instructions

Table 2 the list of currently available vector instructions. For vector masks, vm, which is optional,
can be one of:

• v1t: update vd[i] if LSB(v1[i]) == 1.

• v1f: update vd[i] if LSB(v1[i]) == 0.

Note that only v1 can be a mask register.

Vector vs. Scalar?

It may be confusing a vector register can be configured as either vector or scalar. Roughly speaking,
the difference is all elements of a vector register configured as scalar have the same value.

Unlike traditional vector ISAs, there is no instruction to load a scalar value into a vector register
in the RISC-V Vector ISA. Instead, this can be done by inserting a scalar value to a vector register
configured as scalar. For example, vinsert v0, x1, x0 writes the value of x1 to v0[0]. If v0 is
scalar, all elements should have the same value, and thus, all elements of v0 will have the value of
x1.

18

Instruction Operation

vld vd, offset(rs1), vm vd[i] := mem[(rs1) + offset + i]

vst vs3, offset(rs1), vm mem[(rs1) + offset + i] := vs3[i]

vlds vd, offset(rs1), rs2, vm vd[i] := mem[(rs1) + offset + i * rs2]

vsts vs3, offset(rs1), rs2, vm mem[rs1 + offset + i * (rs2)] := vs3[i]

vldx vd, offset(rs1), vs2, vm vd[i] := mem[(rs1) + offset + vs2[i]]

vstx vs3, offset(rs1), vs2, vm mem[(rs1) + offset + vs2[i]] := vs3[i]

vadd vd, vs1, vs2, vm vd[i] := vs1[i] + vs2[i]

vsub vd, vs1, vs2, vm vd[i] := vs1[i] - vs2[i]

vmul vd, vs1, vs2, vm vd[i] := vs1[i] * vs2[i]

vdiv vd, vs1, vs2, vm vd[i] := vs1[i] / vs2[i]

vrem vd, vs1, vs2, vm vd[i] := vs1[i] % vs2[i]

vmax vd, vs1, vs2, vm vd[i] := max(vs1[i], vs2[i])

vmin vd, vs1, vs2, vm vd[i] := min(vs1[i], vs2[i])

vsl vd, vs1, vs2, vm vd[i] := vs1[i] << vs2[i]

vsr vd, vs1, vs2, vm vd[i] := vs1[i] >> vs2[i]

vseq vd, vs1, vs2, vm vd[i] := vs1[i] == vs2[i] ? 1 : 0

vsne vd, vs1, vs2, vm vd[i] := vs1[i] != vs2[i] ? 1 : 0

vslt vd, vs1, vs2, vm vd[i] := vs1[i] < vs2[i] ? 1 : 0

vsge vd, vs1, vs2, vm vd[i] := vs1[i] >= vs2[i] ? 1 : 0

vaddi vd, vs1, imm, vm vd[i] := vs1[i] + imm

vsli vd, vs1, imm, vm vd[i] := vs1[i] << imm

vsri vd, vs1, imm, vm vd[i] := vs1[i] >> imm

vmadd vd, vs1, vs2, vs3, vm vd[i] := vs1[i] * vs2[i] + vs3[i]

vmsub vd, vs1, vs2, vs3, vm vd[i] := vs1[i] * vs2[i] - vs3[i]

vnmadd vd, vs1, vs2, vs3, vm vd[i] := -(vs1[i] * vs2[i] + vs3[i])

vnmsub vd, vs1, vs2, vs3, vm vd[i] := -(vs1[i] * vs2[i] - vs3[i])

vslide vd, vs1, rs2, vm vd[i] := 0 ≤ (rs2) + i < VL ? vs1[(rs2) + i] : 0

vinsert vd, vs1, rs2, vm vd[(rs2)] := (rs1)

vextract rd, vs1, rs2, vm (rd) := vs1[(rs2)]

vmfirst rd, vs1 (rd) := ([i for i in range(0, VL)

if LSB(vs1[i]) == 1] + [-1])[0]

vmpop rd, vs1 (rd) := len([i for i in range(0, VL)

if LSB(vs1[i]) == 1])

vselect vd, vs1, vs2, vm vd[i] := vs2[i] < VL ? vs1[vs2[i]] : 0

vmerge vd, vs1, vs2, vm vd[i] := LSB(vm[i]) ? vs2[i] : vs1[i]

Table 2: RISC-V Vector Instructions

19

References
[1] Y. Lee. Decoupled Vector-Fetch Architecture with a Scalarizing Compiler. PhD thesis, EECS Department, University of

California, Berkeley, May 2016.

20

	Introduction and goals
	Background
	Example: Conditionalized Single-precision A X Plus B (CSAXPY)
	Packed SIMD Assembly Programming Model
	SIMT Assembly Programming Model
	Traditional Vector Assembly Programming Model
	RISC-V Vector ISA
	Graded Items

	Directed Portion (3 Points)
	General Methodology
	Setting Up Your Workspace
	Comparing vectorized CSAXPY(vec-csaxpy) against scalar CSAXPY(csaxpy)
	Vectorizing Double precision GEneralized Matrix-Vector multiply (dgemv)
	Vectorizing Double precision GEneralized Matrix-Matrix multiply (dgemm)
	Vectorizing Complex Multiply (complxmult)
	Vectorizing Index of MAX (imax)

	Open-ended Portion (7 points + 2 extra points)
	Learning Objectives; Rubric; Submission
	Contest: Vectorizing and Optimizing Sparse Matrix-Vector multiply (SpMV)
	Contest: Vectorizing and Optimizing Radix Sort (rsort))

	The Third Portion: Feedback
	Acknowledgments
	Appendix: Debugging
	Appendix: RISC-V Vector Instructions

