
Final Exam Review: Part 1, 5/3/19 
SOLUTIONS v1.2 

Iron Law 

Do not write “sec/cycle goes up because more hardware” or similar! 

 Instructions / 
Program 

Cycles / 
Instruction Seconds / Cycle Execution Time 

Pipelining a 
single-cycle 

implementation 

No change 
 

This is a purely 
microarchitectural 

change 

Increase 
 

A fully-pipelined 
implementation will 

still have CPI > 1 

Decrease 
 

Pipelining decreases 
the number of serial 
levels of logic that 

data must propagate 
through in one cycle 

Most likely 
decrease 

 
Almost any design 
can benefit from 
some degree of 

pipelining 

Adding stages to 
an existing 

pipeline 

No change 
 

This is a purely 
microarchitectural 

change 

Increase 
 

Deeper pipelines 
generally are more 

susceptible to 
hazards 

Decrease 
 

Pipelining decreases 
the number of serial 
levels of logic that 

data must propagate 
through in one cycle 

Ambiguous 
 

As pipelines get 
“too deep,” the CPI 
increase outweighs 

the diminishing 
clock rate 

improvement 

Adding bypass 
paths to a 

5-stage pipeline 

No change 
 

This is a purely 
microarchitectural 

change 

Decrease 
 

Bypass paths 
resolve hazards, 

allowing 
instructions to avoid 

stalls 

Assuming that the 
bypass paths are 

comparable with the 
reasonable ones 
from a 5-stage 

pipeline, they take 
advantage of slack 
in timing, and have 

no effect on 
seconds/cycle 

 
OR 

 
Increase, as they 
may add to the 
depth of serial logic 
in long pipeline 
stages 

Decrease 
 

OR 
 

Ambiguous, given 
that they could 
combine stages 
entirely (e.g., 

bypassing load data 
output to input of 

ALU). 
 
 

A good justification 
with concrete 
reasoning is 
necessary. 



Adding 
hardware 

floating-point 
instructions 

Decrease 
 

Software 
floating-point 

routines can be 
replaced by single 

instructions 

Increase 
 

Floating point 
instructions likely 
have multi-cycle 

latencies; the 
presence of 

dependencies will 
prevent this from 

always being hidden 
by pipelining 

No change 
 

The longer 
execution of 
floating-point 
instructions is 
almost always 

handled by 
pipelining the FPU 

Decrease 
 

Floating point is 
commonly used, 
and any program 

using it will purely 
benefit 

 

  



Data-in-ROB Machines 

Consider a dual-issue Out-of-Order core with a data-in-ROB design. The ROB has twelve 
entries. Instructions write back the same cycle they complete, and can commit one cycle later. 
ROB entries can be reused one cycle after commit. Instructions can issue on the same cycle that 
the instruction(s) they depend on write back. Loads and stores take three cycles each, ALU 
instructions take one cycle, and branches resolve / complete using the ALU one cycle after they 
issue. All functional units are fully pipelined. 

Fill out the table with the cycles at which instructions enter the ROB, issue to the functional 
units, complete, and commit, and record all destination and operand names. Use ROB0-ROB11 
for the twelve ROB entries. If the instruction producing a source register has committed before 
the dependent instruction enters the ROB, use the architectural register name. On each cycle, two 
instructions can enter the ROB, and one instruction ​of each type​ can issue and complete. Up to 
two instructions of any type may commit per cycle. 

  



loop: lb   t0, 0(a0) 

sb   t0, 0(a1) 

addi a0, a0, 0x1 

addi a1, a1, 0x1 

bne  t0, r0, loop 

 

Fill out the tables below for executing the above strcpy routine the string “H” as input. Assume 
the branch is always predicted taken in time to fill the fetch buffer, and that the ROB is empty 
before the first load. Assume older instructions are prioritized for issue. Fill the table out through 
when the mispredicted branch is caught. What happens? Circle the table entry corresponding 
with the earliest time this could be corrected, assuming branch mispredicts are handled more 
quickly than exceptions. For an infinite string, what is the limit on CPI for this loop? 
 
 

 Cycle # Data Location 

Instruction Enter 
ROB 

Issue Complete Commit ROB 
Slot 

Src1 Src2 

lb t0, 0(a0) 0 1 4 5 ROB0 a0 -- 

sb t0, 0(a1) 0 4 7 8 ROB1 a1 ROB0 

addi a0, a0, 0x1 1 2 3 8 ROB2 a0 -- 

addi a1, a1, 0x1 1 3 4 9 ROB3 a1 -- 

bne t0, r0, loop 2 4 5 9 ROB4 ROB0 r0 

lb t0, 0(a0) 2 3 6 10 ROB5 ROB2 -- 

sb t0, 0(a1) 3 6 9 10 ROB6 ROB3 ROB5 

addi a0, a0, 0x1 3 5 6 11 ROB7 ROB2 -- 

addi a1, a1, 0x1 4 6 7 11 ROB8 ROB3 -- 

bne t0, r0, loop 4 7 8 12 ROB9 ROB5 r0 

lb t0, 0(a0) 5 7 10 -- ROB10 ROB7 -- 

sb t0, 0(a1) 5 -- -- -- ROB11 ROB8 ROB10 

addi a0, a0, 0x1 6 8 9 -- ROB0 ROB7 -- 

(nothing else can enter 
ROB before cycle 9) 

       



● When the mispredicted branch is caught, the ROB entries after the branch are flushed, 
and the correct branch direction (not taken) is fed back to the fetch stage. 

● The earliest that the mispredict could be corrected is the cycle where the mispredicted 
branch completes. 

● How the table is adjusted to correct for branch misprediction recovery isn’t as precisely 
defined as it would be for a midterm question, since the table itself is not a piece of 
microarchitectural state. Don’t worry if the last four rows of your table differ in which 
fields are blanked out. 

● The branch does commit. 

● The “limit on CPI” question is a bit too much of an add-on to this question, as it requires 
you to analyze what the table would have looked like if the string had continued. In the 
infinite string case, the next ​addi​ that would have occupied the last line in the table 
cannot enter the ROB until cycle 9, as the first ​sb​ instruction does not commit until cycle 
8. This pattern of stalling on ROB entries for multiple cycles repeats in the steady state, 
and the number of ROB slots therefore is a limit that increases CPI. 

  



Trace Scheduling 
  
Trace scheduling is a compiler technique that increases ILP by removing control dependencies, 
allowing operations following branches to be moved up and speculatively executed in parallel 
with operations before the branch. It was originally developed for statically scheduled VLIW 
machines, but it is a general technique that can be used in different types of machines, and in this 
question we apply it to a single-issue RISC-V processor. 
 
Consider the following RISC-V code sequence: 
 
    B1: 

        fdiv.d f1, f2, f3 

        fadd.d f4, f1, f5 

        beqz x1, B3        # Taken 99% 

    B2: 

        ld x2, 4(x3) 

        j B4 

    B3: 

        ld x2, 0(x3) 

    B4: 

        addi x2, x2, 8 

        beqz x2, B6        # Taken 99% 

    B5: 

        fsub.d f2, f3, f7 

        j B7 

    B6: 

        fsub.d f2, f2, f6 

        sd f2, 0(x8) 

    B7: 

        addi x3, x3, 8 

        addi x8, x8, 8 

 

The code is executed on an in-order single-issue RISC-V pipeline. Integer arithmetic instructions 
are fully pipelined with a single-cycle latency. Loads are fully pipelined with a two-cycle 
latency. Floating-point add and subtract instructions are fully pipelined with a three-cycle 
latency. Floating-point divide instructions are unpipelined with an 8-cycle latency, but other 
independent instructions can execute while the divider is busy. 



 
Branches that are not taken execute in a single cycle.  Taken branches and unconditional jumps 
incur two stall cycles (three cycles total). 
 
Part A:​ Assume both conditional branches are taken and that all register values are available on 
the first cycle.  How long does the code sequence take to execute (i.e., total pipeline occupancy)? 
 
 1 fdiv.d f1, f2, f3 

 9 fadd.d f4, f1, f5 

10 beqz x1, B3  
13 ld x2, 0(x3) 

15 addi x2, x2, 8 

16 beqz x2, B6  
19 fsub.d f2, f2, f6 

22 sd f2, 0(x8) 

23 addi x3, x3, 8 

24 addi x8, x8, 8 

25 …  
 
First cycle of following code - first cycle of code sequence = “how long code takes to execute” 
 
25 - 1 = ​24 cycles 
 
Part B: ​Consider only the code along the most frequently taken trace.  Omit the branches, and 
show how to reschedule the code along this trace to execute in the least number of cycles, 
without modifying load or store offsets. How many cycles does this trace take? 
 
         ​   1 fdiv.d f1, f2, f3 
            2 ld x2, 0(x3) 

            3 fsub.d f2, f2, f6 

            4 addi x2, x2, 8 

            5 addi x3, x3, 8 

            6 sd f2, 0(x8) 

            7 addi x8, x8, 8 

            9 fadd.d f4, f1, f5 

           10 ... 

 

10 - 1 = ​9 cycles 



Part C: ​Add branches to correctly exit the trace on the infrequent paths and show the fixup code 
required on these exits, without modifying load/store offsets. Your solution should minimize the 
slowdown to the most commonly followed trace. How many cycles does this hot trace now take? 
 
There are multiple possible solutions. With some justification, it would also be possible to claim 
that the ​B2​ and ​B5​ blocks could be stored at some far-off location in the text section, rather than 
immediately after the most frequent (hot) trace. This would allow the code that follows this 
sequence to appear immediately after the hot trace, eliminating the need for the ​j end 
instruction. 
 
            fdiv.d f1, f2, f3    # 1 

            bnez x1, B2          # 2 

            ld x2, 0(x3)         # 3 

            addi x2, x2, 8       # 5 

      cont: bnez x2, B5          # 6 

            fsub.d f2, f2, f6    # 7 

            addi x3, x3, 8       # 8 

            sd f2, 0(x8)         # 9 

            addi x8, x8, 8       # 10 

            fadd.d f4, f1, f5    # 11 

            j end                # 12 

 

       B2:  ld x2, 4(x3) 

            j cont 

 

       B5: 

            fsub.d f2, f3, f7 

            addi x2, x2, 8 

            addi x3, x3, 8 

            addi x8, x8, 8 

            fadd.d f4, f1, f5 

 

      end:  ...                  # 15 

 

 

 
15 - 1 = ​14 cycles 
 
By having the code “fall through” to the next block and relocating B2 and B5 to 
another area in the text section, it could be reduced to 11 cycles. 



Vector ISAs 
 
Vectorize the following double-precision dot product C code using the RVV vector ISA 
described in Appendix A. Your code should perform well for vectors of >10000 elements. 
 
double ddot(int n, double *x, double *y) { 

  double result = 0.0; 

  for (int i = 0; i < n; i++) { 

    result += x[i] * y[i]; 

  } 

  return result; 

} 

 

Part A:​ Vectorize the code. Assume that register ​a0​ holds ​n​, register ​a1​ holds ​x​, and register 
a2​ holds ​y​. Return the result in register ​a0​. You may reorder the floating-point arithmetic 
operations to improve efficiency. As a simplifying assumption, assume that ​N​ is evenly divisible 
by the maximum vector length ​MVL​. 
 
In general, it is possible to make the reduction cheaper by using a tree-like pattern. This requires 
some assumptions on what the legal values of MVL are, and wasn’t necessary for a satisfactory 
answer to this question. Note that the floating-point result of the dot product is held in ​a0​, a 
scalar register. It would need an conversion to be used later on in the program. 
 ​      setvl  t0, a0          # VL = MVL 
       slli   t2, t0, 3       # t2 = VL * 8 

       vslide v0, v1, t0      # zero out v0 

loop:  vld    v1, 0(a1) 

       vld    v2, 0(a2) 

       vmadd  v0, v1, v2, v0  # v0 += v1*v2 

       sub    a0, a0, t0 

       addi   a1, a1, t2 

       add    a2, a2, t2 

       bne    a0, r0, loop 

sum:   addi   t1, r0, 1 

       vslide v1, v0, t1      # v1[i]=v0[i+1] 

accum: vadd   v0, v0, v1      # accumulated 

       vslide v1, v1, t1      # slide v1 left one 

       addi   t0, t0, -1      # decrement counter 

       bne    t0, t1, sum     # only do VL-1 iterations 

val:   vextract a0, v0, r0    # put result in int register a0 

done:  ret 



Part B:​ Discuss at least two ways we could modify this code to support vectors that have lengths 
not evenly divisible by MVL. 
 

● Add scalar code to handle the remainder of the dot product 
● Use predication 

  



Appendix A: Vector Architecture for Question 1 
  
This instruction listing is identical to lab 4’s but with a setvl instruction that has identical 
semantics to the preprocessor macro provided in lab 4. This instruction first sets VL to 
min(maximum vector length, rs1);​ and then returns the new VL. Omitting the final vector mask 
(​vm​) argument to all instructions is legal, and treats all elements ​i  < VL​ as active.  
 

 


