
Final Exam Review: Part 1, 5/3/19
SOLUTIONS v1.2

Iron Law

Do not write “sec/cycle goes up because more hardware” or similar!

 Instructions /
Program

Cycles /
Instruction Seconds / Cycle Execution Time

Pipelining a
single-cycle

implementation

No change

This is a purely
microarchitectural

change

Increase

A fully-pipelined
implementation will

still have CPI > 1

Decrease

Pipelining decreases
the number of serial
levels of logic that

data must propagate
through in one cycle

Most likely
decrease

Almost any design
can benefit from
some degree of

pipelining

Adding stages to
an existing

pipeline

No change

This is a purely
microarchitectural

change

Increase

Deeper pipelines
generally are more

susceptible to
hazards

Decrease

Pipelining decreases
the number of serial
levels of logic that

data must propagate
through in one cycle

Ambiguous

As pipelines get
“too deep,” the CPI
increase outweighs

the diminishing
clock rate

improvement

Adding bypass
paths to a

5-stage pipeline

No change

This is a purely
microarchitectural

change

Decrease

Bypass paths
resolve hazards,

allowing
instructions to avoid

stalls

Assuming that the
bypass paths are

comparable with the
reasonable ones
from a 5-stage

pipeline, they take
advantage of slack
in timing, and have

no effect on
seconds/cycle

OR

Increase, as they
may add to the
depth of serial logic
in long pipeline
stages

Decrease

OR

Ambiguous, given
that they could
combine stages
entirely (e.g.,

bypassing load data
output to input of

ALU).

A good justification
with concrete
reasoning is
necessary.

Adding
hardware

floating-point
instructions

Decrease

Software
floating-point

routines can be
replaced by single

instructions

Increase

Floating point
instructions likely
have multi-cycle

latencies; the
presence of

dependencies will
prevent this from

always being hidden
by pipelining

No change

The longer
execution of
floating-point
instructions is
almost always

handled by
pipelining the FPU

Decrease

Floating point is
commonly used,
and any program

using it will purely
benefit

Data-in-ROB Machines

Consider a dual-issue Out-of-Order core with a data-in-ROB design. The ROB has twelve
entries. Instructions write back the same cycle they complete, and can commit one cycle later.
ROB entries can be reused one cycle after commit. Instructions can issue on the same cycle that
the instruction(s) they depend on write back. Loads and stores take three cycles each, ALU
instructions take one cycle, and branches resolve / complete using the ALU one cycle after they
issue. All functional units are fully pipelined.

Fill out the table with the cycles at which instructions enter the ROB, issue to the functional
units, complete, and commit, and record all destination and operand names. Use ROB0-ROB11
for the twelve ROB entries. If the instruction producing a source register has committed before
the dependent instruction enters the ROB, use the architectural register name. On each cycle, two
instructions can enter the ROB, and one instruction ​of each type​ can issue and complete. Up to
two instructions of any type may commit per cycle.

loop: lb t0, 0(a0)

sb t0, 0(a1)

addi a0, a0, 0x1

addi a1, a1, 0x1

bne t0, r0, loop

Fill out the tables below for executing the above strcpy routine the string “H” as input. Assume
the branch is always predicted taken in time to fill the fetch buffer, and that the ROB is empty
before the first load. Assume older instructions are prioritized for issue. Fill the table out through
when the mispredicted branch is caught. What happens? Circle the table entry corresponding
with the earliest time this could be corrected, assuming branch mispredicts are handled more
quickly than exceptions. For an infinite string, what is the limit on CPI for this loop?

 Cycle # Data Location

Instruction Enter
ROB

Issue Complete Commit ROB
Slot

Src1 Src2

lb t0, 0(a0) 0 1 4 5 ROB0 a0 --

sb t0, 0(a1) 0 4 7 8 ROB1 a1 ROB0

addi a0, a0, 0x1 1 2 3 8 ROB2 a0 --

addi a1, a1, 0x1 1 3 4 9 ROB3 a1 --

bne t0, r0, loop 2 4 5 9 ROB4 ROB0 r0

lb t0, 0(a0) 2 3 6 10 ROB5 ROB2 --

sb t0, 0(a1) 3 6 9 10 ROB6 ROB3 ROB5

addi a0, a0, 0x1 3 5 6 11 ROB7 ROB2 --

addi a1, a1, 0x1 4 6 7 11 ROB8 ROB3 --

bne t0, r0, loop 4 7 8 12 ROB9 ROB5 r0

lb t0, 0(a0) 5 7 10 -- ROB10 ROB7 --

sb t0, 0(a1) 5 -- -- -- ROB11 ROB8 ROB10

addi a0, a0, 0x1 6 8 9 -- ROB0 ROB7 --

(nothing else can enter
ROB before cycle 9)

● When the mispredicted branch is caught, the ROB entries after the branch are flushed,
and the correct branch direction (not taken) is fed back to the fetch stage.

● The earliest that the mispredict could be corrected is the cycle where the mispredicted
branch completes.

● How the table is adjusted to correct for branch misprediction recovery isn’t as precisely
defined as it would be for a midterm question, since the table itself is not a piece of
microarchitectural state. Don’t worry if the last four rows of your table differ in which
fields are blanked out.

● The branch does commit.

● The “limit on CPI” question is a bit too much of an add-on to this question, as it requires
you to analyze what the table would have looked like if the string had continued. In the
infinite string case, the next ​addi​ that would have occupied the last line in the table
cannot enter the ROB until cycle 9, as the first ​sb​ instruction does not commit until cycle
8. This pattern of stalling on ROB entries for multiple cycles repeats in the steady state,
and the number of ROB slots therefore is a limit that increases CPI.

Trace Scheduling

Trace scheduling is a compiler technique that increases ILP by removing control dependencies,
allowing operations following branches to be moved up and speculatively executed in parallel
with operations before the branch. It was originally developed for statically scheduled VLIW
machines, but it is a general technique that can be used in different types of machines, and in this
question we apply it to a single-issue RISC-V processor.

Consider the following RISC-V code sequence:

 B1:

 fdiv.d f1, f2, f3

 fadd.d f4, f1, f5

 beqz x1, B3 # Taken 99%

 B2:

 ld x2, 4(x3)

 j B4

 B3:

 ld x2, 0(x3)

 B4:

 addi x2, x2, 8

 beqz x2, B6 # Taken 99%

 B5:

 fsub.d f2, f3, f7

 j B7

 B6:

 fsub.d f2, f2, f6

 sd f2, 0(x8)

 B7:

 addi x3, x3, 8

 addi x8, x8, 8

The code is executed on an in-order single-issue RISC-V pipeline. Integer arithmetic instructions
are fully pipelined with a single-cycle latency. Loads are fully pipelined with a two-cycle
latency. Floating-point add and subtract instructions are fully pipelined with a three-cycle
latency. Floating-point divide instructions are unpipelined with an 8-cycle latency, but other
independent instructions can execute while the divider is busy.

Branches that are not taken execute in a single cycle. Taken branches and unconditional jumps
incur two stall cycles (three cycles total).

Part A:​ Assume both conditional branches are taken and that all register values are available on
the first cycle. How long does the code sequence take to execute (i.e., total pipeline occupancy)?

 1 fdiv.d f1, f2, f3

 9 fadd.d f4, f1, f5

10 beqz x1, B3
13 ld x2, 0(x3)

15 addi x2, x2, 8

16 beqz x2, B6
19 fsub.d f2, f2, f6

22 sd f2, 0(x8)

23 addi x3, x3, 8

24 addi x8, x8, 8

25 …

First cycle of following code - first cycle of code sequence = “how long code takes to execute”

25 - 1 = ​24 cycles

Part B: ​Consider only the code along the most frequently taken trace. Omit the branches, and
show how to reschedule the code along this trace to execute in the least number of cycles,
without modifying load or store offsets. How many cycles does this trace take?

 ​ 1 fdiv.d f1, f2, f3
 2 ld x2, 0(x3)

 3 fsub.d f2, f2, f6

 4 addi x2, x2, 8

 5 addi x3, x3, 8

 6 sd f2, 0(x8)

 7 addi x8, x8, 8

 9 fadd.d f4, f1, f5

 10 ...

10 - 1 = ​9 cycles

Part C: ​Add branches to correctly exit the trace on the infrequent paths and show the fixup code
required on these exits, without modifying load/store offsets. Your solution should minimize the
slowdown to the most commonly followed trace. How many cycles does this hot trace now take?

There are multiple possible solutions. With some justification, it would also be possible to claim
that the ​B2​ and ​B5​ blocks could be stored at some far-off location in the text section, rather than
immediately after the most frequent (hot) trace. This would allow the code that follows this
sequence to appear immediately after the hot trace, eliminating the need for the ​j end
instruction.

 fdiv.d f1, f2, f3 # 1

 bnez x1, B2 # 2

 ld x2, 0(x3) # 3

 addi x2, x2, 8 # 5

 cont: bnez x2, B5 # 6

 fsub.d f2, f2, f6 # 7

 addi x3, x3, 8 # 8

 sd f2, 0(x8) # 9

 addi x8, x8, 8 # 10

 fadd.d f4, f1, f5 # 11

 j end # 12

 B2: ld x2, 4(x3)

 j cont

 B5:

 fsub.d f2, f3, f7

 addi x2, x2, 8

 addi x3, x3, 8

 addi x8, x8, 8

 fadd.d f4, f1, f5

 end: ... # 15

15 - 1 = ​14 cycles

By having the code “fall through” to the next block and relocating B2 and B5 to
another area in the text section, it could be reduced to 11 cycles.

Vector ISAs

Vectorize the following double-precision dot product C code using the RVV vector ISA
described in Appendix A. Your code should perform well for vectors of >10000 elements.

double ddot(int n, double *x, double *y) {

 double result = 0.0;

 for (int i = 0; i < n; i++) {

 result += x[i] * y[i];

 }

 return result;

}

Part A:​ Vectorize the code. Assume that register ​a0​ holds ​n​, register ​a1​ holds ​x​, and register
a2​ holds ​y​. Return the result in register ​a0​. You may reorder the floating-point arithmetic
operations to improve efficiency. As a simplifying assumption, assume that ​N​ is evenly divisible
by the maximum vector length ​MVL​.

In general, it is possible to make the reduction cheaper by using a tree-like pattern. This requires
some assumptions on what the legal values of MVL are, and wasn’t necessary for a satisfactory
answer to this question. Note that the floating-point result of the dot product is held in ​a0​, a
scalar register. It would need an conversion to be used later on in the program.
 ​ setvl t0, a0 # VL = MVL
 slli t2, t0, 3 # t2 = VL * 8

 vslide v0, v1, t0 # zero out v0

loop: vld v1, 0(a1)

 vld v2, 0(a2)

 vmadd v0, v1, v2, v0 # v0 += v1*v2

 sub a0, a0, t0

 addi a1, a1, t2

 add a2, a2, t2

 bne a0, r0, loop

sum: addi t1, r0, 1

 vslide v1, v0, t1 # v1[i]=v0[i+1]

accum: vadd v0, v0, v1 # accumulated

 vslide v1, v1, t1 # slide v1 left one

 addi t0, t0, -1 # decrement counter

 bne t0, t1, sum # only do VL-1 iterations

val: vextract a0, v0, r0 # put result in int register a0

done: ret

Part B:​ Discuss at least two ways we could modify this code to support vectors that have lengths
not evenly divisible by MVL.

● Add scalar code to handle the remainder of the dot product
● Use predication

Appendix A: Vector Architecture for Question 1

This instruction listing is identical to lab 4’s but with a setvl instruction that has identical
semantics to the preprocessor macro provided in lab 4. This instruction first sets VL to
min(maximum vector length, rs1);​ and then returns the new VL. Omitting the final vector mask
(​vm​) argument to all instructions is legal, and treats all elements ​i < VL​ as active.

