
 1

CS 152: Computer Architecture and Engineering

Final Exam
May 14th, 2019

Professor Krste Asanović

SOLUTIONS

This is a closed book, closed notes exam.
170 Minutes, 24 pages.

• Not all questions are of equal difficulty, so look over the entire exam!
• Please carefully state any assumptions you make.
• Please write your name on every page in the exam.
• Do not discuss the exam with other students who haven’t taken the exam.
• If you have inadvertently been exposed to an exam prior to taking it, you

must tell the instructor or TA.
• You will receive no credit for selecting multiple-choice answers without

giving explanations, if the instructions ask you to explain your choice.
• You may detach the appendences provided at the reverse of the exam.

Question Topic Point Value
1 Virtual Memory 28
2 Memory Hierarchy 24
3 Pipelining 20
4 Cache Coherence 28
5 Multithreading 30
6 Memory Consistency 22
7 Vector Machines 18

TOTAL: 170

 2

Problem 1: Virtual Memory

Multiple choice: Check one unless otherwise noted

A) (2 Point) In a virtually indexed, physically tagged cache, what part of the virtual address
is used to select the cache set? Note: a cache may use part of the VPN if aliasing is corrected via
another mechanism. However, this is a pick one question, so “Page offset” is the best answer.
Those who marked both “VPN” and “Page offset” received partial credit.

[] VPN [] PPN [X] Page offset [] Tag

B) (2 Point) A page-table walker (PTW) handles what kind of events?

[] SegFaults [] Demand paging [] Page faults. [X] TLB misses

C) (3 Points) Which of the following are advantages of page-based virtual memory over a
base-and-bound scheme? Check all that apply.

[] Protecting one process from other processes on the system
[] Translating addresses to virtualize the resource of physical memory
[X] Reduced external fragmentation
[] Reduced address translation cost

D) (3 Points) Explain why TLBs are critical for good performance in a paged virtual
memory system.

In the base case, address translation requires multiple memory accesses to find a physical page
number by traversing the page table hierarchy. Not only are these accesses added to every load
and store, but this must be performed on every instruction fetch to translate the virtual address of
the instruction. A TLB avoids these accesses by caching VPN-to-PPN translations.

For full credit, you must explicitly mention:

- The base case of translation requires extra memory accesses
- TLBs avoid this via caching

E) (4 points) Consider a system with 4096B pages and page-table entries that are 32 bits at
all levels of the page table hierarchy. How many levels of page tables are needed to support a 32-
bit virtual address space?

Each level of the page table hierarchy must fit in a page. Therefore, there are 4096 / 4 = 1024
page table entries per level of the hierarchy. The page offset is log2(4096) = 12 bits, and each
level of the page table hierarchy uses 10 bits of the VPN as an index.

Nlevels = (32b – 12b) / 10b = 2

 3

F) (9 points) Consider a system with the following specifications:

• 8192B page sizes
• 64-bit virtual address space
• 48-bit physical address space
• 32KiB, 4-way set-associative L1 cache with 64B block size
• 256KiB, 4-way set-associative L2 cache with 64B block size
• TLB entries contain 8 bits of metadata

Fill in the table. Show organized work outside the table so partial credit may be assigned.

 # of bits
Physical page number 35
Virtual page number 51
Page offset 13
TLB entry 94
Cache block offset 6
L1 cache tag 35
L1 cache index 7
L2 cache tag 32
L2 cache index 10

- Page offset bits = log2(8192) = 13 bits
- PPN bits = (PA bits) – (page offset bits) = 48 – 13 = 35 bits
- VPN bits = (VA bits) – (page offset bits) = 64 – 13 = 51 bits
- TLB entry bits = (VPN bits) + (PPN bits) + (metadata bits) = (51 + 35 + 8) = 94 bits
- Cache block offset = log2(64) = 6 bits
- L1 cache tag = (PA bits) – log2(32Ki / 4) = 48 – 13 = 35 bits
- L1 cache index = log2(32KiB / (64B * 4)) = log2(128) = 7 bits
- L2 cache tag = (PA bits) – log2(256Ki / 4) = 48 – 16 = 32 bits
- L2 cache index = log2(256KiB / (64B * 4)) = log2(1024) = 10 bits

 4

G) (5 points) In the system from (F), what would be a reasonable technique(s) to apply to
avoid aliasing in the L1 cache while minimizing the overhead of TLB lookups? The L2 cache?
Justify your response.

A reasonable technique to avoid aliasing in the L1 cache while minimizing the overhead of TLB
lookups would be to make it virtually indexed and physically tagged, and to perform the TLB
lookup in parallel with set indexing. This avoids serializing the delay of the TLB check with the
full delay of the cache, but will avoid aliasing, since the L1 cache offset and index bits comprise
13 total bits, all of which are taken from the 13-bit page offset.

A reasonable technique to avoid aliasing in the L2 cache while minimizing the overhead of TLB
lookups would be to make it physically indexed and physically tagged. Since the physical
address is needed by the end of an L1 access to determine whether there has been an L1 miss, it
does not add meaningful overhead to provide the PPN bits at the start of any L2 access. With this
fully physical addressing scheme, aliasing is impossible.

 5

Problem 2: Uniprocessor Caches and Memory Hierarchy

A) (3 Points) How does total capacity, access latency, and bandwidth scale as we move
between layers of a uniprocessor’s memory hierarchy? Indicate the general trend each
with an arrow pointing in the direction of an increase in that parameter.

Memory Example
Parameter

Capacity Access
Latency

Bandwidth

Register File

On-chip Caches

Off-Chip Memory

B) (3 Points) Suppose we build a processor with a 1-cycle L1 hit latency, a 10-cycle L1
miss penalty, and a 20-cycle L2 miss penalty. Assuming a L1 hit rate of 90% and a L2
local hit rate of 80%, what is the average memory access time seen by this processor?

AMAT = TL1,hit + (1 – PL1,hit) * (MissPenaltyL1 + (1 – PL2,hit) * MissPenaltyL2)
AMAT = 1 + 0.1 * 10 + 0.1 * 0.2 * 20
AMAT = 2.4

C) (4 Points) What is the difference between an inclusive and exclusive multi-level cache?
Give one advantage of each approach.

In an inclusive cache hierarchy, an inner cache may only cache lines also cached by
adjacent outer level of the cache hierarchy, whereas in an exclusive cache hierarchy lines
cached by an inner layer are not cached by the outer layer.

Advantage of exclusion:

- Increased on-chip capacity (@ constant area)

Advantage of inclusion:
- Easier to implement cache coherence

We accepted other well justified answers.

 2.4 cycles

 6

The remainder of this problem evaluates cache performance for different loop orderings.
Consider the following two loops, written in C, which calculates the sum of all elements of a 16
by 512 matrix of 32-bit integers:

Loop A Loop B
int sum = 0;
for (i = 0; i < 16; i++)
 for (j = 0; j < 512; j++)
 sum += A[i][j];

int sum = 0;
for (j = 0; j < 512; j++)
 for (i = 0; i < 16; i++)
 sum += A[i][j];

The matrix A is stored contiguously in memory in row-major order. Row-major order means that
elements in the same row of the matrix are adjacent in memory. You may assume A starts at 0x0,
thus A[i][j] resides in memory location [4*(512*i + j)].

Assume:

- caches are initially empty.
- only accesses to matrix A cause memory references and all other necessary variables are

stored in registers.
- instructions are in a separate instruction cache.

D) (7 points) Consider a 4KiB direct-mapped data cache with 64-byte cache lines. Calculate the
number of cache misses that will occur when running Loop A. Calculate the number of cache
misses that will occur when running Loop B. You must show your work for full credit!

Notes:

- to index into a set of this cache we use bits [6:11] of the address.
- 64 / 4 = 16 words per cache line
- there are 24 * 29 = 8192 total elements à 29 total cache lines to store the matrix
- each element is accessed only once

For loop A:
- Consecutive elements within a row are 4 bytes apart
- Every 16 elements we experience a cache miss, but then hit on all remaining 15 elements

in that line à one miss per cache line à 512 misses
For loop B:

- Consecutive elements within a column are 512 * 4 = 211 bytes apart à the MSB of the set
address toggles every access; and the tag changes every pair of accesses

- For any given column, all accesses strike two alternating sets: {0,1}XXXXX à every
access misses à 8192 misses

The number of cache misses for Loop A:

The number of cache misses for Loop B:

8192
512

 7

E) (7 points) Consider a 4KiB fully-associative data cache with 64-byte cache lines. This data
cache uses a first-in/first-out (FIFO) replacement policy. Calculate the number of cache misses
that will occur when running Loop A, and when running Loop B. You must show your work for
full credit!

Loop A’s solution remains unchanged: we fully consume each 64B cache line as we stride along
the row.

Loop B:

- This cache has 212 / 26 = 64 lines, like the last cache
- The array has 16 rows < 64 lines
- Accessing the columns j % 16 == 0, will miss on every access, but every accessed line

remains in cache (lines brought in 64-49 misses ago will be evicted)
- Columns j % 16 != 0, hit on every access à 1 miss per cache line à 512 misses like loop

The number of cache misses for Loop A:

The number of cache misses for Loop B:

t512

t512

 8

Problem 3: Pipelining and The Iron Law

Iron Law (15 points total)

 Instructions /
Program

Cycles /
Instruction Seconds / Cycle Execution Time

Pipelining a
single-cycle

implementation

Negligible effect /
no change

This is a purely

microarchitectural
change

Increase

A fully-pipelined
implementation

will have CPI > 1,
since hazards may

exist among
instructions in

different stages.

Decrease

Pipelining inserts
registers in the
middle of the

datapath,
decreasing the

number of serial
levels of logic that

data must
propagate through

in one cycle.

Almost certainly
decrease

Almost any design
can benefit from
some degree of

pipelining. In other
words, one

pipeline stage is
rarely the optimal

number for
performance.

Pipelining an
unpipelined
multi-cycle

implementation,
while keeping
the latency of

each instruction
constant

Negligible effect /
no change

This is a purely

microarchitectural
change

Decrease

An unpipelined
implementation

cannot exploit ILP
and waits for each

operation to
complete before

beginning the next.

Negligible effect /
no change

A pipelined

implementation
may be a bit more
complex, but well-
designed stalls or
replay logic will
avoid deep serial

paths.

Decrease

Pipelining will
generally help the

performance of
multi-cycle
processing

pipelines, at the
expense of
increased

complexity and
area.

Reducing the
number of
stages in a
pipeline

Negligible effect /
no change

This is a purely

microarchitectural
change

Decrease

Shallower
pipelines will be
exposed to fewer
hazards, as they

have fewer
overlapped

instructions that
may have

dependencies.

Increase

Merging or
lengthening stages

will cause more
work to be done in

a single clock
cycle, and the

merged logic in the
datapath will often

be serial.

Ambiguous

This is highly
dependent on both
the baseline design
and workload. The
CPI decrease may

be relatively
smaller or larger

than the clock
period increase.

 9

Modifying the 5-stage Pipeline: Long Latencies

A) (2 Point) If we allow non-dependent operations to proceed while a multiply is
outstanding, which parts of execution are proceeding “out-of-order” in the processor? Assume
that multiply operations cannot generate exceptions based on their input or output values. Check
all that apply.

[] Issue [X] Completion [] Commit [] None of these

B) (3 Points) Suppose we want to add a multiplier with an 8-cycle latency and an 8-cycle
occupancy to a 5-stage pipeline, as shown above. We must keep around some information about
registers whose values are pending an outstanding multiply operation. What type of
microarchitectural structure is commonly used for this purpose?

Scoreboard

F D X M W

load_data_M

alu_out_W

+4

alu_out_M

load_data_W

M

L1 D$

X

D

Register File

L1 I$

PC

ALU

Bypass M
ux

Bypass M
ux

W

W
B Data M

ux

addr

wdata

BP2

BP4

Misaligned
Addr

Exception

BP3

BP1

Long-Latency Multiplier
Control Logic to

Accommodate Multiplier

?

BP1-4 are existing sources of
bypass data for bypass muxes

 10

Problem 4: Cache Coherence

A) (2 Point) What is the fewest number of metadata bits (i.e., not including the line’s tag and

data) a writeback cache must track per cache line to implement an MSI coherence protocol
(assume no transient states).

[] 1 bit [X] 2 bits [] 3 bits [] 4 bits

B) (3 Point) Which sequence of memory operations would produce less coherency traffic under
MESI vs MSI. Assume all memory operations act on the same cache line, and that neither
processor P1 nor P2 have the line in cache initially. Check all that apply.

[] P1.read, P2.read, P1.write
[X] P1.read, P1.write, P2.read
[] P1.write, P2.read, P1.read

C) (3 Points) In general, which of the following are advantages of snoopy cache coherence
over directory-based cache coherence. Check all that apply.

[X] Simpler to implement
[] Scalable to more cores
[X] Lower latency on cache misses
[] Uses less interconnect bandwidth

D) (4 Points) In the table below, indicate which memory operations experience a hit, true
sharing miss, or false sharing miss under an MSI protocol. Assume x1, x2 are in the same cache
line and the line is initially cached in a shared state by both processors (P1 and P2). The first row
is filled out for you.

Time P1 P2 Hit
True

Sharing
Miss

False
Sharing

Miss

1 Write x2 X

2 Read x1 X

3 Read x1 X

4 Write x2 X

5 Write x1 X

 11

In the remainder of this question, we’ll study a simplified version of the directory-based cache
coherence scheme from HW5 (detach Appendix B, attached to the reverse of the exam). Our
system consists of 16 cores, each with write-back, write-allocate private caches. All caches are
connected to a single directory. Specifically, we’re interested the series of coherence events that
transpire to service a CPU’s load or store under different initial conditions. For example,
consider a load-miss in CPU0 to a line is currently not cached by any CPU in the system:

Time Agent Current State Event/Message
Received Next State Message(s) Sent

0 CPU 0 C-nothing Load C-pending ShReq(0)
1 Directory R(ε) (empty) ShReq(0) R(0) ShResp(0)
2 CPU 0 C-pending ShResp(0) C-shared N/A

Total Messages Sent: 2

Simplifications:
- assume agents can send and receive multiple messages simultaneously
- assume messages take one time step to reach their destinations
- if a set of events may happen in parallel, indicate this by setting the “time” field to the
same value.
- include only the ID field of messages (i.e., neglect data, address fields)

E) (6 Points) In the table below, indicate the series of events that occur to service CPU0, load-
miss when CPU 4 has the line cached in the C-exclusive state.

Time Agent Current State Event/Message
Received Next State Message(s) Sent

0 CPU 0 C-nothing Load C-pending ShReq(0)
1 Directory W(4) ShReq(0) TW(0,4) WbReq(4)
2 CPU4 C-exclusive WbReq(4) C-shared WbResp(4)
3 Directory TW(0,4) WbResp(4) R({0,4}) ShResp(0)
4 CPU 0 C-pending ShResp(0) C-shared N/A

Total Messages Sent: 4

 12

F) (10 Points) In the table below, indicate the series of events that occur to service CPU0’s store-
miss when CPUs 0, 4 and 8 have the line cached in a shared state.

Time Agent Current

State
Event/Message(s)

Received Next State Message(s) Sent

0 CPU 0 C-Shared Store C-pending ExReq(0)
1 Directory R({0,4,8}) ExReq(0) TR(0,{4,8}) InvReq(4);InvReq(8)
2 CPU4 C-Shared InvReq(4) C-nothing InvResp(4)
2 CPU8 C-Shared InvReq(8) C-nothing InvResp(8)

3 Directory TR(0,{4,8}) InvResp(4);
InvResp(8) W(0) ExResp(0)

4 CPU0 C-pending ExResp(0) C-exclusive N/A

Total Messages Sent: 6

 13

Question 5: Multithreading

A) (2 Points) If we multithread a classic 5-stage RISC pipeline with no bypassing (the result of

an instruction can be read in decode one cycle after writeback) using a fixed-interleave
policy, how many threads are required to avoid interlocks (assume no other hazards)?

[] 3 [X] 4 [] 5 [] 6

B) (4 Points) The following diagrams indicate how the slots of a four execution units are being

utilized, with each row corresponding to a different cycle and each column corresponding to
a functional unit slot of the machine. Instructions belonging to different threads are indicated
with a different color and texture. A white square indicates an empty slot. Label each
illustration with letter (A – G) of the corresponding multithreading scheme.

 [E] [A] [B] [D]

C) (3 Points) Which of the following must be duplicated per-thread in a multithreaded

processor. Check all that apply.

[X] GPRs
[] TLBs
[X] PCs
[] Branch Predictors
[] Reorder Buffers

F D X M WB

M

WBXD

Register File

Instruction
 C

ache

PC ALU

L1 Data
Cache

Labels
A: Simultaneous MT
B: Coarse-grained MT
C: Vertical MT
D: Multiprocessing
E: Fine-grained MT
F: Horizontal MT
G: Parallel MT

 14

In remainder of this question, we will consider the execution of the following C kernel:

void kernel(float * A, float * B, float * C, int N) {
 for (int i = 0; i < N; i++)
 C[i] += A[i] * B[i];
}

The code above can be translated into the following RISC-V assembly code:

a1, a2, a3 hold A, B, and C respectively
a4 holds N
t0 is initially 0
loop:

flw f1, 0(a1)
flw f2, 0(a2)
flw f3, 0(a3)
fmul f4, f1, f2
fadd f5, f4, f3
fst f5, 0(a3)
addi a1, a1, 4
addi a2, a2, 4
addi a3, a3, 4
addi t0, t0, 1
bne t0, a4, loop

Each cycle, the processor can fetch and issue one instruction that performs any of the following
operations:
- load/store, 20-cycle latency (fully pipelined)
- integer add, 1-cycle latency
- floating-point add, 1-cycle latency
- floating-point multiply, 5-cycles latency (fully pipelined)
- branch, no delay slots, 1-cycle latency

The processor does not have a cache. Each memory operation directly accesses main memory. If
an instruction cannot be issued due to a data dependency, the processor stalls. We also assume
that the processor has a perfect branch predictor with no penalty for both taken and not-taken
branches. Assume N is very large.

 15

D) (5 points) Consider a single-issue in-order, multithreaded pipeline, where threads are
switched every cycle using a fixed round-robin schedule. If the thread is not ready to run on
its turn, a bubble is inserted into the pipeline. Each thread executes the above algorithm, and
is calculating its own independent piece of the A array (i.e., there is no communication
required between threads). In steady state, how many cycles does the machine take to execute
each loop iteration for a very large value of N, without rescheduling (changing) the assembly
and assuming only a single thread. Explain.

Instruction Issue Cycle Complete Cycle
0 flw f2, 0(a1) 0 20
1 flw f2, 0(a2) 1 21
2 flw f3, 0(a3) 2 22
3 fmul f4, f1, f2 21 26
4 fadd f5, f4, f3 26 27
5 fst f5, 0(a3 27 47
6 addi a1, a1, 4 28 29
7 addi a2, a2, 4 29 30
8 addi a3, a3, 4 30 31
9 addi t0, t0, 1 31 32
10 bne t0, a4, loop 32 33
 flw f2, 0(a1) 33 34

E) (4 points) Without rescheduling (changing) the assembly, how many threads are required to

saturate the machine from part D? Explain.

 Memory operations are the longest latency operations at 20 cycles: we’ll need to hide that
latency to fully utilize the machine. The fmul (3) and fadd (4) are the only two instructions that
depend on loads, each has an intermediate instruction (2) and (3) between them respectively. As
such we’ll need N threads, where:

 N = élatency / (# of intermediate instructions + 1) ù = é20 / (2) ù = 10

You can also check the fadd dependency on fmul isn’t problematic with the same expression.

 N = élatency / (# of intermediate instructions + 1) ù = é5 / 1ù = 5 (5 < 10)

33 cycles

10 threads

 16

F) (12 points) What is the minimum number of threads we need to achieve peak performance
on the machine from part D, assuming you may reschedule the code as necessary without
loop unrolling. Explain, giving your final schedule.

You may perform the following optimizations:

• Reordering instructions
• Renaming / re-allocating registers
• Changing load/store immediate offsets

Without tricks like software pipelining or loop unrolling which we (tried to) forbid,
the objective here is to stuff as many existing intermediate operations between long latency
operations and their dependent instructions as possible. We’re looking for a schedule that
minimizes the largest Ni,j, where i and j are indexes of dependent instructions in program order (i
depends on j):

Ni,j = latencyj / (i – j)

loop:

0 flw f1, 0(a1)
1 flw f2, 0(a2)
2 flw f3, 0(a3)
3 addi a1, a1, 4
4 addi a2, a2, 4
5 addi a3, a3, 4
6 fmul f4, f1, f2
7 addi t0, t0, 1 # many students forgot to put an insn here
8 fadd f5, f4, f3
9 fst f5, -4(a3)
10 bne t0, a4, loop

There are four long-latency (> 1 cycle) operations we need to consider:
fmul à flw (0): N6,0 = é20 / (6 – 0) ù = 4
fmul à flw (1): N6,1 = é20 / (6 – 1) ù = 4
fadd à flw (2): N8,2 = é20 / (8 – 2) ù = 4
fadd à fmul: N8,6 = é5 / (8 – 6) ù = 3

This schedule requires 4 threads. Some crafty students tried software pipelining: a schedule
requiring only three threads received full credit (an extra instruction would have made it possible
to do it in two.)

4 threads

 17

Problem 6 7: Memory Consistency Models (20 points)

A) (3 Points) Is it possible to translate code that assumes sequential consistency to the RISC-V

weak memory consistency model? Explain.

Yes, by inserting memory fences where violations of SC may be visible to another thread.
Existence proof: for example, one foolproof way to achieve this is to insert a fencerw,rw
between every memory operation in each thread.

B) (3 Points) Given the instruction sequences below, check all possible combinations of P1.r2,

P2.r2 after both threads have executed, assuming an ISA that is sequentially consistent. X
and Y are non-overlapping, and initially X = 0, Y = 0,

P1: P2:
li r1, 1 li r1, 2
st r1, X st r1, Y
lw r2, Y ld r2, X

[] P1.r2 = 0; P2.r2 = 0
[X] P1.r2 = 0; P2.r2 = 1
[X] P1.r2 = 2; P2.r2 = 0
[X] P1.r2 = 2; P2.r2 = 1

C) (2 Points) Given the same instruction sequences and initial conditions from part B, which of

the following combinations are possible under an ISA with TSO memory consistency model.

[X] P1.r2 = 0; P2.r2 = 0
[X] P1.r2 = 0; P2.r2 = 1
[X] P1.r2 = 2; P2.r2 = 0
[X] P1.r2 = 2; P2.r2 = 1

D) (4 Points) In general, what is the difference between a weak and a strong memory

consistency model? Give one advantage of each.

Weak memory models relax some combination of the program-order and/or write-atomicity
constraints imposed by stronger memory models.

Advantage of a strong memory model:
- More intuitive memory semantics make it easier to write and debug concurrent code
- Similarly, easier to write correct compilers for high-level languages
Advantage of a weak memory model:
- Easier to build simple implementations (more design flexibility, many simple

optimizations would violate a strong MCM without considerably more complexity)
- Easier to build high-performance implementations, as the implementation can

aggressively reorder memory ops without needing to speculate on the MCM

 18

(10 points) The following RISC-V assembly encodes a request-response relationship between
two threads. The requestor thread puts work in a memory location request and then sets go =
1. It then spins waiting on the responder to produce the response. The responder thread spins
waiting for work from the master, by checking if go has been set. Once available, it reads the
request data, computes the response, and writes the response data to a memory location
response before setting done = 1.

Requestor thread: Responder thread:

Under a fully relaxed memory consistency model, insert fences where necessary to ensure this
code functions correctly? Use the least restrictive fences for full credit. Assume each thread
executes its code only once.

spin:
lw a1, go
beq a1, spin

 lw a2, request
 sw zero, go
 … a3 = process request

sw a3, response
li a0, 1
sw a0, done

li a0, 1
sw data, request
sw a0, go

spin:
lw a1, done
beqz a1, spin
lw a2, response
sw zero, done

spin:

lw a1, go

beq a1, spin

fencer,r

 lw a2, request

 sw zero, go

 … a3 = process request

sw a3, response

fencew,w

li a0, 1

sw a0, done

li a0, 1

sw data, request

fencew,w

sw a0, go

spin:

lw a1, done

beqz a1, spin

fencer,r

lw a2, response

sw zero, done

 19

Problem 8 7: Vector Machines

A) (2 Point) What is the minimum number of lanes a machine must have to exploit data-level
parallelism on vector instructions when VL is set to 4?

[X] 1 [] 2 [] 4 [] 8

Even single-lane vector machines may exploit DLP by pipelining vector operations in a manner
that takes advantage of the lack of inter-element dependencies.

B) (16 points) Vectorize the following 32-bit integer C code using the RISC-V vector
specification described in lab 4. See appendix A for the vector instruction set listing.

for (i = 0; i < N; i++) {

B[i] = (A[i] < 0) ? -A[i] : A[i]; // A and B do not overlap
}

v0, v2-v8: configured to hold 32-bit integer values
v1: configured to hold 8-bit integers, used as mask register
a0 and a1: hold pointers A and B, respectively
a2: holds N.
t0-t3 may be used as scalar temporaries

Your code begins:

zero:
 setvl t0, a2
 vsub v0, v0, v0 # v0[i] = 0

stripmine_loop:
 setvl t0, a2
 slli t1, t0, 0x2
 vld v2, 0(a0)
 vslt v1, v2, v0
 vsub v2, v0, v2, v1t
 vst v2, 0(a1)
 add a0, a0, t1
 add a1, a1, t1
 sub a2, a2, t0
 bne a2, r0, stripmine_loop

done:
 ret

 20

Appendix A: Vector Architecture for Question 1 7

This instruction listing is identical to that in Lab 4, but with a setvl instruction that has
identical semantics to the preprocessor macro provided in Lab 4. This instruction first sets VL to
min(maximum vector length, rs1); and then returns the new VL.

- The two vector mask arguments are v1t (perform op only if v1[i] is true) and v1f
(perform op only if v1[i] is false). Omitting the final vector mask (vm) argument to all
instructions is legal, and treats all elements i < VL as active.

- Unlike shortening VL, lengthening VL causes the elements extending past the previous
vector length to have undefined values.

1

 Appendix B: Directory-based Cache Coherence Protocol (Abridged Handout 6)

Changes from the handout:

• Rep renamed Resp (Rep will still be accepted)
• Tr and Tw now include the site id (idreq) that initialized the request
• Removed unnecessary messages, columns, and rows for the exam
• Removed home sites – there is only one directory site

Cache states: For each cache line, there are 4 possible states:

� C-nothing: The accessed data is not resident in the cache.
� C-shared: The accessed data is resident in the cache, and possibly also cached at other sites.

The data in memory is valid.
� C-exclusive: The accessed data is exclusively resident in this cache and has been modified.
� C-pending: The accessed data is in a transient state.

Directory states: For each memory block, there are 4 possible states:
� R(dir): The memory block is shared by the sites specified in dir (dir is a set of sites). The

data in memory is valid in this state. If dir is empty (i.e., dir = ε), the memory block is not
cached by any site.

� W(id): The memory block is exclusively cached at site id, and has been modified at that
site. Memory does not have the most up-to-date data.

� TR(idreq, dir): The memory block is in a transient state waiting for the acknowledgements
to the invalidation requests that the directory has issued, before giving exclusive access to
the site idreq that initiated the request.

� TW(idreq, id): The memory block is in a transient state waiting for a block exclusively
cached at site id (i.e., in C-modified state) to make the memory block at the directory up-
to-date, before servicing initial request made by site idreq.

Protocol messages:

Category Messages
Cache to Memory Requests ShReq, ExReq
Memory to Cache Requests WbReq, InvReq
Cache to Memory Responses WbResp(v), InvResp
Memory to Cache Responses ShResp(v), ExResp(v)

22

2

Table B-1: Cache State Transitions

Table B-2: Directory State Transitions, messages sent from site id.

Current State Handling Message Next State Action

C-nothing Load C-pending ShReq(id)

C-nothing Store C-pending ExReq(id)

C-nothing ShResp (a) C-shared updates cache with prefetch data

C-nothing ExResp (a) C-exclusive updates cache with data

C-shared Store C-pending ExReq(id)

C-shared InvReq(a) C-nothing InvResp(id)

C-exclusive WbReq(a) C-shared WbResp(id, data(a))

C-pending ShResp(a) C-shared updates cache with data

C-pending ExResp(a) C-exclusive update cache with data

Current State

Message Received Next State Action

R(dir) & (dir = ε)

ShReq(a) R({id}) ShResp(id, data(a))

ExReq(a) W(id) ExResp(id, data(a))

R(dir) & (id ∉ dir) &
(dir ≠ ε)

ShReq(a) R(dir + {id}) ShResp(id, data(a))

ExReq(a) Tr(id, dir) InvReq(dir, a)
// Note: here id is also = idreq

R(dir) & (dir = {id}) ExReq(a) W(id) ExResp(id, data(a))

R(dir) & (id ∈ dir) &
(dir ≠ {id})

ExReq(a) Tr(id, dir-{id}) InvReq(dir - {id}, a)
// Note: here id is also = idreq

W(id’) (id’ ≠ id) ShReq(a) Tw(id, id’) WbReq(id’, a)
// Note: here id is also = idreq

Tr(idreq, dir) & (id ∈ dir) &
dir ≠ {id}

InvResp(a) Tr(idreq, dir - {id}) None

Tr(idreq, dir) & (dir = {id}) InvResp(a) W(idreq) ExResp(idreq, data(a))

Tw(idreq, id) WbResp(a) R({idreq, id}) data-> memory; ShResp(idreq)

23

