

CS152 Midterm 2 Review

Out-of-Order Processors

Consider two processor pipelines.Processor A is an out-of-order, dual-issue superscalar that uses a
typical Unified Physical Register File scheme. Processor B is also a dual-issue out-of-order pipeline,
but does not support any type of register renaming.

A) For which programs(s) will Processor A have fewer bubbles than Processor B? Why?

// Program 1

lw t0, 0(t2)

addi t1, t1, 1

addi t2, t2, 1

addi t3, t3, 1

beq t0, t4, done

// Program 2

lw t0, 0(t2)

add t1, t0, t1

addi t0, t4, 1

sw t0, 0(t5)

beq t1, t4, done

// Program 3

lw t0, 0(t2)

addi t1, t0, 1

addi t2, t1, 1

addi t3, t2, 1

beq t3, t4, done

B) How does adding register renaming affect the Instructions / Program term of the Iron Law?
The Cycles / Instruction term?

Out-of-Order Pipeline Latency Diagram
(to be used for the rest of this question)

Use the following information to determine how execution progresses

● The machine can fetch, dispatch, and issue ​one​ instruction per cycle
● The processor runs the RISC-V instruction set with the floating point extension
● Assume every load hits in the single-cycle-hit L1 D$ (indicated as DC in the pipeline)
● Register renaming follows the ​Unified Physical Register File​ scheme
● Unless otherwise directed, ​assume there are no bypass paths for data
● Instructions are written into the ROB at the end of the DEC/REN1 stage
● Instructions are written into the issue queue at the end of the REN2/DIS stage
● Instructions are read from the issue queue in the ISS stage. When an instruction is selected for

issue in a given cycle, it is in the ISS stage for that cycle and is said to “issue” that cycle.
● Instructions write their results to PRd at the end of the WB stage. This is also when they set the

done ​ bit in their ROB entry. An instruction “completes” in the writeback stage.
● Commit is handled by a decoupled unit that looks at the ROB entries. At most one instruction

may commit per cycle. Registers appear on the free list at the end of the “commit” cycle.
● Jump instructions complete on the same cycle that they dispatch. They do not go to an issue

queue and do not use an issue slot. Assume all jump targets are perfectly predicted.

C) Consider the following instruction sequence:

A: add t3, t2, t1

B: add t4, t3, t3

Assume that instruction A is in the WB stage during cycle 6. On what cycle is it theoretically
safe to issue instruction B? Why is this the case? What will the issue logic have to do to
accommodate this?

D) What is the absolute minimum number of physical registers that a unified physical register
file, out-of-order RISC-V machine could have and still work? Justify your response.

E) Consider the following code sequence that begins at address 0x80001104

loop:

fld f0, 0(t1)

fld f1, 0(t2)

fmul.d f0, f0, f1

fadd.d f2, f2, f0

fld f0, 8(t2)

fadd.d f2, f2, f0

j loop

Start from cycle 0, in which:

● The rename table and free list have the following initial state
● The first fld is in the REN2/DIS stage, having just added its entry to the ROB
● No other entries are in the ROB
● All instructions have already been fetched into the fetch buffer already be fetched, assuming

perfect jump target prediction.

Unused architectural registers are omitted from the rename table for clarity.

Rename table Free list (dequeue from top):

t0 p5 p13
p8
p6
p18
p7
p4
p1
p9
p12

t1 p3

t2 p11

f0 p10​ p13

f1 p19

f2 p14

Fill in the following table (which describes the execution of each instruction) for seven instructions,
beginning with the first ​fld ​. In the “Time” columns, fill in the cycles in which the instruction dispatches,
issues, completes, and commits, respectively. You should use the tables on the previous page to help
keep track of the state of the machine, but they will not be graded. Assume none of the instructions
cause exceptions, and that the issue queues are never full.

Complete every blank box in the table. Assume the fast issue logic from part (C)

 Physical Registers Cycle #

PC PRd LPRd PR1 PR2 Disp. Issue Comp. Commit

0x80001104 p13 p10 0

How many physical registers does this machine have? What would happen if there were [FOUR]
fewer physical registers?

VLIW Machines

A) What is the defining characteristic of a software-pipelined implementation of a loop?

B) Assume that register t3 starts with value 0x4. What is its value of address 0x48 after the
following sequence of VLIW instructions? Is the branch taken?

Int1 Int2 Mem

add t4, t3, t3 addi t3, t3, 0x2

add t4, t3, t3 addi t3, t4, 0x0

beq t4, t3, done addi t4, t4, 0x1 sw t4, 0x48(r0)

C) Consider the following naive code for a strcpy routine:

strcpy: lb t0, 0(a0)

sb t0, 0(a1)

addi a0, a0, 0x1

addi a1, a1, 0x1

bne t0, r0, strcpy

done:

Assuming cache hits take >1 cycle, optimize the code to improve CPI without unrolling

strcpy:

D) Manually unroll the code to do two iterations per backwards jump.

strcpy:

E) Complete the following software-pipelined, unrolled, VLIW implementation. All branches must
go in the ‘Int1’ execution slot. The prologue has been completed for you.

Label Int1 Int2 Load Store

strcpy: addi a0, a0, 2 lb t0, 0(a0)

 addi a1, a1, 2 lb t1, -1(a0)

loop:

done:

F) What is the maximum allowable latency of a load that still allows the loop to run without
stalls? Assume all accesses hit in the L1 D$.

Branch History Tables

Consider the following C loop, which accumulates a vector sum.

for (i = 0; i < n; i++)

 sum += a[i]

It translates to the following assembly, and is run on a processor with a 512-entry BHT.

addi t0, r0, 0x0 // PC = 0x81001000

loop: beq t0, a1, done

lw t1, 0(a0)

addi a0, a0, 0x4

addi t0, t0, 0x1

add t2, t2, t1

j loop //

done:

After this code runs for n > 10, is it possible to know the final value of any BHT entries? If so,
list the index and associated value for each.

