
CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 1 - Introduction

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://people.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

What is Computer Architecture?

2

Application

Physics

Gap too large to bridge
in one step

In its broadest definition, computer architecture is the design of
the abstraction layers that allow us to implement information
processing applications efficiently using available manufacturing
technologies.

(but there are exceptions, e.g.
magnetic compass)

3

Abstraction Layers in Modern Systems

Algorithm

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machines

Microarchitecture

Devices

Programming Language

Circuits

Physics

EECS151/251

CS162

CS170
CS164

EE143

CS152/252

UCB EECS
Courses

4

Computing Devices Then…

EDSAC, University of Cambridge, UK, 1949

5

Computing Devices Now

Robots

Supercomputers
Automobiles

Laptops

Set-top
boxes

Smart
phones

Servers
Media

Players

Sensor Nets

Routers

Cameras
Games

Compatibility

Cost of software development
makes compatibility a major
force in market

Architecture continually changing

6

Applications

Technology

Applications
suggest how to
improve
technology,
provide
revenue to
fund
development

Improved
technologies
make new
applications
possible

7

[from Kurzweil]

Major
Technology
Generations Bipolar

nMOS

CMOS

pMOS

Relays

Vacuum
Tubes

Electromechanical

?

Single-Thread Processor Performance

8

[H
en

ne
ss

y
&

 P
at

te
rs

on
, 2

01
7

]

Upheaval in Computer Design
• Most of last 50 years, Moore’s Law ruled

– Technology scaling allowed continual performance/energy
improvements without changing software model

• Last decade, technology scaling slowed/stopped
– Dennard (voltage) scaling over (supply voltage ~fixed)
– Moore’s Law (cost/transistor) over?
– No competitive replacement for CMOS anytime soon
– Energy efficiency constrains everything

• No “free lunch” for software developers, must consider:
– Parallel systems
– Heterogeneous systems

9

Today’s Dominant Target Systems
• Mobile (smartphone/tablet)

– >1 billion sold/year
– Market dominated by ARM-ISA-compatible general-purpose processor in

system-on-a-chip (SoC)
– Plus sea of custom accelerators (radio, image, video, graphics, audio,

motion, location, security, etc.)

• Warehouse-Scale Computers (WSCs)
– 100,000’s cores per warehouse
– Market dominated by x86-compatible server chips
– Dedicated apps, plus cloud hosting of virtual machines
– Now seeing increasing use of GPUs, FPGAs, custom hardware to

accelerate workloads

• Embedded computing
– Wired/wireless network infrastructure, printers
– Consumer TV/Music/Games/Automotive/Camera/MP3
– Internet of Things!

10

11

This Year: Combined CS152/CS252
• CS152/CS252 share lectures in 306 Soda, MW 1:00-2:30pm

– For CS252 students, initial lectures are optional review material
– some later lectures include some CS252-only material

• CS152/CS252 share two midterms (in class, 80 minutes each)
– but some questions marked as CS152 only or CS252 only

• CS152 has problem sets
– CS252 students welcome to use PS for revision, self-learning

• CS152 has labs
– CS252 students welcome to use labs for self-learning

• CS152 has discussion sections F 2-4pm, 3113 Etcheverry
• CS152 has final exam

• CS252 has paper readings with discussion in (405 Soda, 11am,
Mondays)

• CS252 has course projects with final presentation/paper

12

CS152/CS252 Administrivia
Instructor: Prof. Krste Asanovic, krste@berkeley.edu

Office: (inside ADEPT Lab)

Office Hours: Wed. 10-11AM (email to confirm), 567 Soda
T. A.s: David Biancolin, biancolin@eecs OH: Tue, 2pm, Room TBD

Albert Magyar, albert.magyar@berkeley OH: Wed, 4:30pm,
Room TBD

Lectures: MW, 1:00-2:30PM, 306 Soda
252 Readings discussion: Monday 11am-noon, 405 Soda
152 Sections: F 12-2/PM, 2-4PM, 3113 Etcheverry (start 2/1)
Text: Computer Architecture: A Quantitative Approach, Hennessey and

Patterson, 6th Edition (2017)
Readings assigned from this edition, some readings available in older
editions – see web page.

Web page: http://inst.eecs.berkeley.edu/~cs152
Lectures available online by noon before class

Piazza: http://piazza.com/berkeley/spring2019/cs152

13

CS152 Course Grading
• 15% Problem Sets

– Intended to help you learn the material. Feel free to discuss with other
students and instructors, but must turn in your own solutions. Grading
based mostly on effort, but exams assume that you have worked
through all problems. Solutions released after PSs handed in.

• 25% Labs
– Labs use advanced full architectural simulators, including Amazon-

hosted FPGA simulators of working RISC-V systems

– Directed plus open-ended sections to each lab

• 60% Exams (two midterms plus final, 15%+15%+30%)
– Closed-book, no calculators, no smartphones, no smartwatch, no

laptops,...

– Based on lectures, readings, problem sets, and labs

14

CS252 Course Grading
• 20% Paper readings

– Paper summaries, discussion participation

• 30% Exams (two midterms, 15%+15%)
– Closed-book, no calculators, no smartphones, no smartwatch, no

laptops,...
– Based on lectures, readings, problem sets, and labs

• 50% Class Project
– Substantial research project in pairs, regular 1-1 meetings with staff,

10-page conference-style paper and class presentation,

CS152/CS252 Crossovers
• Berkeley undergrads cannot take CS252 before CS152

• CS152 students can participate in 252 paper readings if
room, but can not submit responses

• CS152 students can do a class project but won’t be graded
• CS152 students welcome to attend 252 final project

presentations

• CS252 students can complete 152 PSs but won’t be graded
• CS252 students can take 152 labs but won’t be graded
• CS252 students can attend 152 discussion sections if room

15

16

CS152 Labs
• Each lab has directed plus open-ended assignments

• Directed portion (2/7) is intended to ensure students learn

main concepts behind lab

– Each student must perform own lab and hand in their own lab report

• Open-ended assignment (5/7) is to allow you to show your

creativity

– Roughly a one-day “mini-project”

» E.g., try an architectural idea and measure potential, negative results

OK (if explainable!)

– Students can work individually or in groups of two or three

– Group open-ended lab reports must be handed in separately

– Students can work in different groups for different assignments

• Lab reports must be readable English summaries – not

dumps of log files!!!!!!

– We will reward good reports, and penalize undecipherable reports

Class ISA is RISC-V
• RISC-V is a new free, simple, clean, extensible ISA we

developed at Berkeley for education (61C/151/152/252)
and research (ParLab/ASPIRE/ADEPT)

– RISC-I/II, first Berkeley RISC implementations
– Berkeley research machines SOAR/SPUR considered RISC-III/IV

• Both of the dominant ISAs (x86 and ARM) are too
complex to use for teaching or research

• RISC-V has taken off commercially
• RISC-V Foundation manages standard riscv.org
• Now upstream support for many tools (gcc, Linux,

FreeBSD, …)
• Nvidia is using RISC-V in all future GPUs
• Western Digital is using RISC-V in all future products
• Govt. India selected RISC-V as national ISA

17

Foundation: 200+ Members

Chisel simulators
• Chisel is a new hardware description language we

developed at Berkeley based on Scala
– Constructing Hardware in a Scala Embedded Language

• Labs will use RISC-V processor simulators derived from
Chisel processor designs

– Gives you much more detailed information than other simulators
– Can map to FPGA or real chip layout

• You need to learn some minimal Chisel in CS152, but we’ll
make Chisel RTL source available so you can see all the
details of our processors

• Can do lab projects based on modifying the Chisel RTL
code if desired

19

Chisel Design Flow

20

Chisel Design
Description

FPGA
Verilog

ASIC
Verilog

Chisel Compiler

FPGA
Emulation

FPGA Tools

GDS Layout

ASIC Tools

Questions?

21

22

Computer Architecture:
A Little History

Throughout the course we’ll use a historical narrative to
help understand why certain ideas arose

Why worry about old ideas?
• Helps to illustrate the design process, and explains why

certain decisions were taken
• Because future technologies might be as constrained as

older ones
• Those who ignore history are doomed to repeat it

– Every mistake made in mainframe design was also made in
minicomputers, then microcomputers, where next?

Analog Computers
§ Analog computer represents problem variables as

some physical quantity (e.g., mechanical
displacement, voltage on a capacitor) and uses scaled
physical behavior to calculate results

[Marsyas, Creative Commons BY-SA 3.0]

Antikythera mechanism c.100BC

[BenFrantzDale, Creative Commons BY-SA 3.0]

Wingtip vortices off Cesna tail in wind tunnel

Digital Computers
§ Represent problem variables as numbers encoded

using discrete steps
- Discrete steps provide noise immunity

§ Enables accurate and deterministic calculations
- Same inputs give same outputs exactly

§ Not constrained by physically realizable functions
§ Programmable digital computers are CSx52 focus

24

Charles Babbage (1791-1871)
§ Lucasian Professor of

Mathematics, Cambridge
University, 1828-1839

§ A true “polymath” with interests
in many areas

§ Frustrated by errors in printed
tables, wanted to build machines
to evaluate and print accurate
tables

§ Inspired by earlier work
organizing human “computers” to
methodically calculate tables by
hand

25

[Copyright expired and in public domain.
Image obtained from Wikimedia Commons.]

Difference Engine 1822
§ Continuous functions can be approximated by

polynomials, which can be computed from difference
tables:

f(n) = n2 + n + 41
d1(n) = f(n) – f(n-1) = 2n
d2(n) = d1(n) – d1(n-1) = 2

§ Can calculate using only a single adder:

26

n

d2(n)

d1(n)

f(n)

0

41

1

2

2

2

3

2

4

2

4 6 8

43 47 53 61

Realizing the Difference Engine
§ Mechanical calculator, hand-cranked, using decimal digits
§ Babbage did not complete the DE, moving on to the Analytical

Engine (but used ideas from AE in improved DE 2 plan)
§ Schuetz in Sweden completed working version in 1855, sold

copy to British Government

27

§ Modern day recreation of DE2,
including printer, showed entire
design possible using original
technology
- first at British Science Museum
- copy at Computer History Museum in

San Jose

[Geni, Creative Commons BY-SA 3.0]

Analytical Engine 1837
§ Recognized as first general-purpose digital computer

- Many iterations of the design (multiple Analytical Engines)
§ Contains the major components of modern computers:

- “Store”: Main memory where numbers and intermediate results were
held (1,000 decimal words, 40-digits each)

- “Mill”: Arithmetic unit where processing was performed including
addition, multiplication, and division

- Also supported conditional branching and looping, and exceptions on
overflow (machine jams and bell rings)

- Had a form of microcode (the “Barrel”)

§ Program, input and output data on punched cards
§ Instruction cards hold opcode and address of operands in

store
- 3-address format with two sources and one destination, all in store

§ Branches implemented by mechanically changing order cards
were inserted into machine

§ Only small pieces were ever built
28

Analytical Engine Design Choices
§ Decimal, because storage on mechanical gears
- Babbage considered binary and other bases, but no clear

advantage over human-friendly decimal
§ 40-digit precision (equivalent to >133 bits)
- To reduce impact of scaling given lack of floating-point

hardware
§ Used “locking” or mechanical amplification to

overcome noise in transferring mechanical motion
around machine
- Similar to non-linear gain in digital electronic circuits

§ Had a fast “anticipating” carry
-Mechanical version of pass-transistor carry propagate used

in CMOS adders (and earlier in relay adders)

29

Ada Lovelace (1815-1852)

§ Translated lectures of Luigi
Menabrea who published notes of
Babbage’s lectures in Italy

§ Lovelace considerably embellished
notes and described Analytical
Engine program to calculate
Bernoulli numbers that would
have worked if AE was built
- The first program!

§ Imagined many uses of computers
beyond calculations of tables

§ Was interested in modeling the
brain

30
[By Margaret Sarah Carpenter,

Copyright expired and in public domain]

Early Programmable Calculators
§ Analog computing was popular in first half of 20th

century as digital computing was too expensive
§ But during late 30s and 40s, several programmable

digital calculators were built (date when operational)
- Atanasoff Linear Equation Solver (1939)
- Zuse Z3 (1941)
- Harvard Mark I (1944)
- ENIAC (1946)

31

Atanasoff-Berry Linear Equation Solver (1939)

32

§ Fixed-function calculator for solving up to 29 simultaneous
linear equations

§ Digital binary arithmetic (50-bit fixed-point words)
§ Dynamic memory (rotating drum of capacitors)
§ Vacuum tube logic for processing

[Manop, Creative Commons BY-SA 3.0]

In 1973, Atanasoff was
credited as inventor of
“automatic electronic
digital computer” after
patent dispute with
Eckert and Mauchly
(ENIAC)

Zuse Z3 (1941)
§ Built by Konrad Zuse in wartime Germany using 2000 relays
§ Had normalized floating-point arithmetic with hardware

handling of exceptional values (+/- infinity, undefined)
- 1-bit sign, 7-bit exponent, 14-bit significand

§ 64 words of memory
§ Two-stage pipeline 1) fetch&execute 2) writeback
§ No conditional branch
§ Programmed via paper tape

33

Replica of the Zuse Z3 in the
Deutsches Museum, Munich

[Venusianer, Creative Commons BY-SA 3.0]

Harvard Mark I (1944)

§ Proposed by Howard Aiken at Harvard, and funded and built by
IBM

§ Mostly mechanical with some electrically controlled relays and
gears

§ Weighed 5 tons and had 750,000 components
§ Stored 72 numbers each of 23 decimal digits
§ Speed: adds 0.3s, multiplies 6s, divide 15s, trig >1 minute
§ Instructions on paper tape (2-address format)
§ Could run long programs automatically
§ Loops by gluing paper tape into loops
§ No conditional branch
§ Although mentioned Babbage in proposal, was more limited

than analytical engine

34
[Waldir, Creative Commons BY-SA 3.0]

ENIAC (1946)
§ First electronic general-purpose computer
§ Construction started in secret at UPenn Moore School of

Electrical Engineering during WWII to calculate firing tables for
US Army, designed by Eckert and Mauchly

§ 17,468 vacuum tubes
§ Weighed 30 tons, occupied 1800 sq ft, power 150kW
§ Twelve 10-decimal-digit accumulators
§ Had a conditional branch!
§ Programmed by plugboard and switches, time consuming!
§ Purely electronic instruction fetch and execution, so fast

- 10-digit x 10-digit multiply in 2.8ms (2000x faster than Mark-1)
§ As a result of speed, it was almost entirely I/O bound
§ As a result of large number of tubes, it was often broken (5

days was longest time between failures)

35

ENIAC

36
[Public Domain, US Army Photo]

Changing the program could take days!

EDVAC
§ ENIAC team started discussing stored-program concept to

speed up programming and simplify machine design
§ John von Nuemann was consulting at UPenn and typed up

ideas in “First Draft of a report on EDVAC”
§ Herman Goldstine circulated the draft June 1945 to many

institutions, igniting interest in the stored-program idea
- But also, ruined chances of patenting it
- Report falsely gave sole credit to von Neumann for the ideas
- Maurice Wilkes was excited by report and decided to come to US

workshop on building computers
§ Later, in 1948, modifications to ENIAC allowed it to run in

stored-program mode, but 6x slower than hardwired
- Due to I/O limitations, this speed drop was not practically significant

and improvement in productivity made it worthwhile
§ EDVAC eventually built and (mostly) working in 1951

- Delayed by patent disputes with university

37

[Piero71, Creative
Commons BY-SA 3.0]

Williams-Kilburn
Tube Store

Manchester SSEM “Baby” (1948)
§ Manchester University group build small-scale experimental

machine to demonstrate idea of using cathode-ray tubes
(CRTs) for computer memory instead of mercury delay lines

§ Williams-Kilburn Tubes were first random access electronic
storage devices

§ 32 words of 32-bits, accumulator, and program counter
§ Machine ran world’s first stored-program in June 1948
§ Led to later Manchester Mark-1 full-scale machine

- Mark-1 introduced index registers
- Mark-1 commercialized by Ferranti

38

Cambridge EDSAC (1949)
§ Maurice Wilkes came back from workshop in US and set about

building a stored-program computer in Cambridge
§ EDSAC used mercury-delay line storage to hold up to 1024

words (512 initially) of 17 bits (+1 bit of padding in delay line)
§ Two’s-complement binary arithmetic
§ Accumulator ISA with self-modifying code for indexing
§ David Wheeler, who earned the world’s first computer science

PhD, invented the subroutine (“Wheeler jump”) for this
machine
- Users built a large library of useful subroutines

§ UK’s first commercial computer, LEO-I (Lyons Electronic
Office), was based on EDSAC, ran business software in 1951
- Software for LEO was still running in the 1980s in emulation on ICL

mainframes!
§ EDSAC-II (1958) was first machine with microprogrammed

control unit
39

Commercial computers:
BINAC (1949) and UNIVAC (1951)

§ Eckert and Mauchly left U.Penn after patent rights

disputes and formed the Eckert-Mauchly Computer

Corporation

§ World’s first commercial computer was BINAC with

two CPUs that checked each other

- BINAC apparently never worked after shipment to first

(only) customer

§ Second commercial computer was UNIVAC

-Used mercury delay-line memory, 1000 words of 12 alpha

characters

- Famously used to predict presidential election in 1952

- Eventually 46 units sold at >$1M each

-Often, mistakingly called the IBM UNIVAC

40

IBM 701 (1952)
§ IBM’s first commercial scientific computer
§ Main memory was 72 William’s Tubes, each 1Kib, for

total of 2048 words of 36 bits each
-Memory cycle time of 12µs

§ Accumulator ISA with multipler/quotient register
§ 18-bit/36-bit numbers in sign-magnitude fixed-point
§ Misquote from Thomas Watson Sr/Jr:

“I think there is a world market for maybe five
computers”

§ Actually TWJr said at shareholder meeting:
“as a result of our trip [selling the 701], on which we
expected to get orders for five machines, we came

home with orders for 18.”
41

IBM 650 (1953)
§ The first mass-produced computer
§ Low-end system with drum-based storage and digit

serial ALU
§ Almost 2,000 produced

42
[Cushing Memorial Library and Archives, Texas A&M,

Creative Commons Attribution 2.0 Generic]

IBM 650 Architecture

43
[From 650 Manual, © IBM]

Magnetic Drum (1,000
or 2,000

10-digit decimal
words)

20-digit
accumulator

Active instruction
(including next

program counter)

Digit-serial
ALU

IBM 650 Instruction Set
§ Address and data in 10-digit decimal words
§ Instructions encode:
- Two-digit opcode encoded 44 instructions in base

instruction set, expandable to 97 instructions with options
- Four-digit data address
- Four-digit next instruction address
- Programmer’s arrange code to minimize drum latency!

§ Special instructions added to compare value to all
words on track

44

Early Instruction Sets
§ Very simple ISAs, mostly single-address accumulator-

style machines, as high-speed circuitry was expensive
- Based on earlier “calculator” model

§ Over time, appreciation of software needs shaped ISA
§ Index registers (Kilburn, Mark-1) added to avoid need

for self-modifying code to step through array
§ Over time, more index registers were added
§ And more operations on the index registers
§ Eventually, just provide general-purpose registers

(GPRs) and orthogonal instruction sets
§ But some other options explored…

45

Burrough’s B5000 Stack Architecture:
Robert Barton, 1960

§ Hide instruction set completely from programmer
using high-level language (ALGOL)

§ Use stack architecture to simplify compilation,
expression evaluation, recursive subroutine calls,
interrupt handling,…

46

Evaluation of Expressions

47

a
b
c

(a + b * c) / (a + d * c - e)
/

+

* +a e

-

ac

d c

*b

Reverse Polish
a b c * + a d c * + e - /

push apush bpush cmultiply

*

Evaluation Stack

b * c

Evaluation of Expressions

48

a

(a + b * c) / (a + d * c - e)
/

+

* +a e

-

ac

d c

*b

Reverse Polish
a b c * + a d c * + e - /

add

+

Evaluation Stack

b * c
a + b * c

IBM’s Big Bet: 360 Architecture
§ By early 1960s, IBM had several incompatible families

of computer:
701 → 7094
650 → 7074
702 → 7080
1401 → 7010

§ Each system had its own
- Instruction set
- I/O system and secondary storage (magnetic tapes,

drums and disks)
- assemblers, compilers, libraries,...
-market niche (business, scientific, real time, ...)

49

IBM 360 : Design Premises
Amdahl, Blaauw and Brooks, 1964

§ The design must lend itself to growth and successor
machines

§ General method for connecting I/O devices
§ Total performance - answers per month rather than bits

per microsecond → programming aids
§ Machine must be capable of supervising itself without

manual intervention
§ Built-in hardware fault checking and locating aids to

reduce down time
§ Simple to assemble systems with redundant I/O devices,

memories etc. for fault tolerance
§ Some problems required floating-point larger than 36 bits

50

Stack versus GPR Organization
Amdahl, Blaauw and Brooks, 1964

1. The performance advantage of push-down stack organization
is derived from the presence of fast registers and not the way
they are used.

2.“Surfacing” of data in stack which are “profitable” is
approximately 50% because of constants and common
subexpressions.

3. Advantage of instruction density because of implicit addresses
is equaled if short addresses to specify registers are allowed.

4. Management of finite-depth stack causes complexity.
5. Recursive subroutine advantage can be realized only with the

help of an independent stack for addressing.
6. Fitting variable-length fields into fixed-width word is awkward.

51

IBM 360: A General-Purpose Register
(GPR) Machine

§ Processor State
- 16 General-Purpose 32-bit Registers
- may be used as index and base register
- Register 0 has some special properties

- 4 Floating Point 64-bit Registers
- A Program Status Word (PSW)
- PC, Condition codes, Control flags

§ A 32-bit machine with 24-bit addresses
- But no instruction contains a 24-bit address!

§ Data Formats
- 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit double-

words

52

The IBM 360 is why bytes are 8-bits long today!

IBM 360: Initial Implementations

53

Model 30 . . . Model 70

Storage 8K - 64 KB 256K - 512 KB
Datapath 8-bit 64-bit
Circuit Delay 30 nsec/level 5 nsec/level
Local Store Main Store Transistor Registers
Control Store Read only 1�sec Conventional circuits

IBM 360 instruction set architecture (ISA) completely hid the
underlying technological differences between various models.

Milestone: The first true ISA designed as portable hardware-
software interface!

With minor modifications it still survives today!

© 2017 IBM Corporation

z14 processor design summary

Micro-Architecture

• 10 cores per CP-chip
• 5.2GHz

• Cache Improvements:
• 128KB I$ + 128KB D$
• 2x larger L2 D$ (4MB)
• 2x larger L3 Cache
• symbol ECC

• New translation & TLB design
• Logical-tagged L1 directory
• Pipelined 2nd level TLB
• Multiple translation engines

• Pipeline Optimizations
• Improved instruction delivery
• Faster branch wakeup
• Improved store hazard avoidance
• 2x double-precision FPU bandwidth
• Optimized 2nd generation SMT2

• Better Branch Prediction
• 33% Larger BTB1 & BTB2
• New Perceptron & Simple Call/Return Predictor

Architecture

• PauseLess Garbage Collection
• Vector Single & Quad precision
• Long-multiply support (RSA, ECC)
• Register-to-register BCD arithmetic

Accelerators

• Redesigned in-core crypto-accelerator
• Improved performance
• New functions (GCM, TRNG, SHA3)

• Optimized in-core compression accelerator
• Improved start/stop latency
• Huffman encoding for better

compression ratio
• Order-preserving compression

IBM Mainframes survive until today

54

[z14, 2017, 14nm technology, 17 layers of metal, 696 sq mm]

Server Market

55

56

And in conclusion …
• Computer Architecture >> ISAs and RTL
• CSx52 is about interaction of hardware and software, and

design of appropriate abstraction layers
• Computer architecture is shaped by technology and

applications
– History provides lessons for the future

• Computer Science at the crossroads from sequential to
parallel computing

– Salvation requires innovation in many fields, including computer
architecture

• Read Chapter 1 & Appendix A for next time! (5th edition)

57

Acknowledgements
• These slides contain material developed and copyright by:

– Arvind (MIT)
– Krste Asanovic (MIT/UCB)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)

• MIT material derived from course 6.823
• UCB material derived from course CS252

