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Last Time in Lecture 1
§ Computer Architecture >> ISAs and RTL

– CS152 is about interaction of hardware and software, and design of 
appropriate abstraction layers

§ Technology and Applications shape Computer Architecture
– History provides lessons for the future

§ First 130 years of CompArch, from Babbage to IBM 360
– Move from calculators (no conditionals) to fully programmable machines
– Rapid change started in WWII (mid-1940s), move from electro-mechanical to 

pure electronic processors

§ Cost of software development becomes a large constraint on 
architecture (need compatibility)

§ IBM 360 introduces notion of “family of machines” running 
same ISA but very different implementations

– Six different machines released on same day (April 7, 1964)
– “Future-proofing” for subsequent generations of machine
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Instruction Set Architecture (ISA)

§ The contract between software and hardware

§ Typically described by giving all the programmer-visible 

state (registers + memory) plus the semantics of the 

instructions that operate on that state

§ IBM 360 was first line of machines to separate ISA from 

implementation (aka. microarchitecture)

§ Many implementations possible for a given ISA

– E.g., the Soviets build code-compatible clones of the IBM360, as did 

Amdahl after he left IBM.

– E.g.2., today you can buy AMD or Intel processors that run the x86-64 ISA.

– E.g.3: many cellphones use the ARM ISA with implementations from many 

different companies including Apple, Qualcomm, Samsung, Huawei, etc.

§ We use Berkeley RISC-V as standard ISA in class

– www.riscv.org
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ISA to Microarchitecture Mapping

§ ISA often designed with particular microarchitectural style 
in mind, e.g.,

Accumulator Þ hardwired, unpipelined
CISC Þ microcoded
RISC Þ hardwired, pipelined
VLIW Þ fixed-latency in-order parallel pipelines
JVM Þ software interpretation

§ But can be implemented with any microarchitectural style
– Intel Ivy Bridge: hardwired pipelined CISC (x86) 

machine (with some microcode support)
– Spike: Software-interpreted RISC-V machine
– ARM Jazelle: A hardware JVM processor
– This lecture: a microcoded RISC-V machine
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Why Learn Microprogramming?

§To show how to build very small processors with complex ISAs
§To help you understand where CISC* machines came from
§Because still used in common machines (x86, IBM360, PowerPC)
§As a gentle introduction into machine structures
§To help understand how technology drove the move to RISC*

* “CISC”/”RISC” names much newer than style of 
machines they refer to.
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Control versus Datapath

§ Processor designs can be split between datapath, where 

numbers are stored and arithmetic operations computed, 

and control, which sequences operations on datapath
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§ Biggest challenge for early 

computer designers was getting 

control circuitry correct

§ Maurice Wilkes invented the 

idea of microprogramming to 

design the control unit of a 

processor for EDSAC-II, 1958

- Foreshadowed by Babbage’s 

“Barrel” and mechanisms in 

earlier programmable calculators
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Microcoded CPU
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Technology Influence

§ When microcode appeared in 1950s, different 
technologies for:

– Logic: Vacuum Tubes
– Main Memory: Magnetic cores
– Read-Only Memory: Diode matrix, punched metal 

cards, …

§ Logic very expensive compared to ROM or RAM
§ ROM cheaper than RAM
§ ROM much faster than RAM
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RISC-V ISA
§ New  fifth-generation RISC design from UC Berkeley
§ Realistic & complete ISA, but open & small
§ Not over-architected for a certain implementation style
§ Both 32-bit (RV32) and 64-bit (RV64) address-space variants
§ Designed for multiprocessing
§ Efficient instruction encoding
§ Easy to subset/extend for education/research
§ RISC-V spec available on Foundation website and github
§ Increasing momentum with industry adoption

§ Please see CS61C Fall 2017, Lectures 5-7 for RISC-V ISA review:
http://inst.eecs.berkeley.edu/~cs61c/fa17/
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RV32 Processor State
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Program counter (pc)

32x32-bit integer registers (x0-x31)
• x0 always contains a 0

32 floating-point (FP) registers (f0-f31)
• each can contain a single- or double-
precision FP value (32-bit or 64-bit 
IEEE FP)

FP status register (fcsr), used for FP 
rounding mode & exception reporting



RISC-V Instruction Encoding

§ Can support variable-length instructions.
§ Base instruction set (RV32) always has fixed 32-bit 

instructions lowest two bits = 112

§ All branches and jumps have targets at 16-bit granularity 
(even in base ISA where all instructions are fixed 32 bits)
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RISC-V Instruction Formats
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Single-Bus Datapath for Microcoded RISC-V
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Microinstructions written as register transfers:

§ MA:=PC means RegSel=PC; RegW=0; RegEn=1; MALd=1

§ B:=Reg[rs2] means RegSel=rs2; RegW=0; RegEn=1; BLd=1

§ Reg[rd]:=A+B means ALUop=Add; ALUEn=1; RegSel=rd; RegW=1
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RISC-V Instruction Execution Phases

§ Instruction Fetch
§ Instruction Decode
§ Register Fetch
§ ALU Operations
§ Optional Memory Operations
§ Optional Register Writeback
§ Calculate Next Instruction Address
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Microcode Sketches (1)
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Instruction Fetch: MA,A:=PC

PC:=A+4

wait for memory
IR:=Mem

dispatch on opcode

ALU: A:=Reg[rs1]

B:=Reg[rs2]

Reg[rd]:=ALUOp(A,B)

goto instruction fetch

ALUI: A:=Reg[rs1]

B:=ImmI //Sign-extend 12b immediate

Reg[rd]:=ALUOp(A,B)

goto instruction fetch



Microcode Sketches (2)
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LW: A:=Reg[rs1]
B:=ImmI //Sign-extend 12b immediate
MA:=A+B
wait for memory
Reg[rd]:=Mem
goto instruction fetch

JAL: Reg[rd]:=A  // Store return address
A:=A-4        // Recover original PC
B:=ImmJ // Jump-style immediate
PC:=A+B
goto instruction fetch

Branch: A:=Reg[rs1]
B:=Reg[rs2]
if (!ALUOp(A,B)) goto instruction fetch //Not taken
A:=PC  //Microcode fall through if branch taken
A:=A-4
B:=ImmB// Branch-style immediate
PC:=A+B
goto instruction fetch



Pure ROM Implementation
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§ How many address bits?
|µaddress| = |µPC|+|opcode|+ 1 + 1

§ How many data bits?
|data| = |µPC|+|control signals| = |µPC| + 18

§ Total ROM size = 2|µaddress|x|data|

µPC

ROM
Address

Data

Opcode Cond? Busy?

Next µPC Control Signals



Pure ROM Contents
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Address | Data                                               
µPC  Opcode Cond? Busy? | Control Lines Next µPC 
fetch0 X X X | MA,A:=PC fetch1
fetch1 X X 1 | fetch1
fetch1 X X 0 | IR:=Mem fetch2
fetch2 ALU X X | PC:=A+4 ALU0
fetch2 ALUI X X | PC:=A+4 ALUI0
fetch2 LW X X | PC:=A+4 LW0
….

ALU0 X X X | A:=Reg[rs1] ALU1
ALU1 X X X | B:=Reg[rs2] ALU2
ALU2 X X X | Reg[rd]:=ALUOp(A,B) fetch0



Single-Bus Microcode RISC-V ROM Size

§ Instruction fetch sequence 3 common steps
§ ~12 instruction groups
§ Each group takes ~5 steps (1 for dispatch)
§ Total steps 3+12*5 = 63, needs 6 bits for µPC

§ Opcode is 5 bits, ~18 control signals

§ Total size = 2(6+5+2)x(6+18)=213x24 = ~25KiB!
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Reducing Control Store Size

§ Reduce ROM height (#address bits)
– Use external logic to combine input signals
– Reduce #states by grouping opcodes

§ Reduce ROM width (#data bits)
– Restrict µPC encoding (next,dispatch,wait on memory,…)
– Encode control signals (vertical µcoding, nanocoding)
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Single-Bus RISC-V Microcode Engine
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µPC Jump Types

§ next increments µPC
§ spin waits for memory
§ fetch jumps to start of instruction fetch
§ dispatch jumps to start of decoded opcode group
§ ftrue/ffalse jumps to fetch if Cond? true/false
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Encoded ROM Contents
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Address | Data                                               
µPC  | Control Lines Next µPC 
fetch0 | MA,A:=PC next
fetch1 | IR:=Mem spin
fetch2 | PC:=A+4 dispatch

ALU0 | A:=Reg[rs1] next
ALU1 | B:=Reg[rs2] next
ALU2 | Reg[rd]:=ALUOp(A,B) fetch

Branch0 | A:=Reg[rs1] next
Branch1 | B:=Reg[rs2] next
Branch2 | A:=PC ffalse
Branch3 | A:=A-4 next
Branch4 | B:=ImmB next
Branch5 | PC:=A+B fetch



CS152 Administrivia

§ Grading clarifications
– You must complete 3/5 labs or get an automatic F regardless of other 

grades

§ Slip days
– Problem sets have no slip days
– Labs have two free extensions (max one per lab) until next class after 

due date
– No other extensions without documented emergency
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CS252 Administrivia

§ CS252 Readings on Website
– Must use Piazza to send private note on each per paper thread to 

instructors before midnight Sunday before Monday discussion 
containing paper report:
• Write one paragraph on main content of paper including good/bad 

points of paper
• Also, 1-3 questions about paper for discussion
• First two “360 Architecture”, “B5000 Architecture”

§ CS252 Project Timeline
– Proposal due start of class Wed Feb 27th
– One page including:

• project title
• team members (2 per project)
• what problem are you trying to solve?
• what is your approach?
• infrastructure to be used
• timeline/milestones
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Implementing Complex Instructions
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Memory-memory add: M[rd] = M[rs1] + M[rs2]

Address | Data                                               
µPC  | Control Lines Next µPC 
MMA0 | MA:=Reg[rs1] next
MMA1 | A:=Mem spin
MMA2 | MA:=Reg[rs2] next
MMA3 | B:=Mem spin
MMA4 | MA:=Reg[rd] next
MMA5 | Mem:=ALUOp(A,B) spin
MMA6 | fetch

Complex instructions usually do not require datapath modifications, only 
extra space for control program

Very difficult to implement these instructions using a hardwired controller 
without substantial datapath modifications



Single-Bus Datapath for Microcoded RISC-V
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Datapath unchanged for complex instructions!
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Horizontal vs Vertical µCode
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§ Horizontal µcode has wider µinstructions
– Multiple parallel operations per µinstruction
– Fewer microcode steps per macroinstruction
– Sparser encoding Þ more bits

§ Vertical µcode has narrower µinstructions
– Typically a single datapath operation per µinstruction

§ separate µinstruction for branches
– More microcode steps per macroinstruction
– More compact  Þ less bits

§ Nanocoding
– Tries to combine best of horizontal and vertical µcode

# µInstructions

Bits per µInstruction



Nanocoding
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§ Motorola 68000 had 17-bit µcode containing either 10-bit µjump 
or 9-bit nanoinstruction pointer

– Nanoinstructions were 68 bits wide, decoded to give 196 
control signals

µcode ROM

nanoaddress

µcode 
next-state

µaddress

µPC (state)

nanoinstruction ROM
data

Exploits recurring control 
signal patterns in µcode, 
e.g., 

ALU0 A ← Reg[rs1] 
...
ALUI0 A ← Reg[rs1]
...



Microprogramming in IBM 360
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§ Only the fastest models (75 and 95) were hardwired

M30 M40 M50 M65
Datapath width (bits) 8 16 32 64

µinst width (bits) 50 52 85 87

µcode size (K µinsts) 4 4 2.75 2.75

µstore technology CCROS TCROS BCROS BCROS

µstore cycle (ns) 750 625 500 200

memory cycle (ns) 1500 2500 2000 750

Rental fee ($K/month) 4 7 15 35



IBM Card-Capacitor Read-Only Storage
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[ IBM Journal, January 1961]

Punched Card with 
metal film

Fixed 
sensing 
plates



Microcode Emulation
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§ IBM initially miscalculated the importance of software 
compatibility with earlier models when introducing the 360 
series

§ Honeywell stole some IBM 1401 customers by offering 
translation software (“Liberator”) for Honeywell H200 series 
machine

§ IBM retaliated with optional additional microcode for 360 
series that could emulate IBM 1401 ISA, later extended for 
IBM 7000 series

– one popular program on 1401 was a 650 simulator, so some customers ran 
many 650 programs on emulated 1401s

– i.e., 650 simulated on 1401 emulated on 360



Microprogramming thrived in ‘60s and ‘70s
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§ Significantly faster ROMs than DRAMs were available
§ For complex instruction sets, datapath and controller were 

cheaper and simpler 
§ New instructions , e.g., floating point, could be supported 

without datapath modifications
§ Fixing bugs in the controller was easier
§ ISA compatibility across various models could be achieved 

easily and cheaply

Except for the cheapest and fastest machines, all 
computers were microprogrammed



Microprogramming: early 1980s
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§ Evolution bred more complex micro-machines
– Complex instruction sets led to need for subroutine and call stacks in 

µcode
– Need for fixing bugs in control programs was in conflict with read-only 

nature of µROM 
– èWritable Control Store (WCS)  (B1700, QMachine, Intel i432, …)

§ With the advent of VLSI technology assumptions about ROM & 
RAM speed became invalid àmore complexity

§ Better compilers made complex instructions less important.
§ Use of numerous micro-architectural innovations, e.g., 

pipelining, caches and buffers, made multiple-cycle execution 
of reg-reg instructions unattractive



VAX 11-780 Microcode
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Writable Control Store (WCS)
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§ Implement control store in RAM not ROM
– MOS SRAM memories now almost as fast as control store (core 

memories/DRAMs were 2-10x slower)
– Bug-free microprograms difficult to write

§ User-WCS provided as option on several minicomputers
– Allowed users to change microcode for each processor

§ User-WCS failed
– Little or no programming tools support
– Difficult to fit software into small space
– Microcode control tailored to original ISA, less useful for others
– Large WCS part of processor state - expensive context switches
– Protection difficult if user can change microcode
– Virtual memory required restartable microcode



Analyzing Microcoded Machines
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§ John Cocke and group at IBM
– Working on a simple pipelined processor, 801, and advanced compilers 

inside IBM
– Ported experimental PL.8 compiler to IBM 370, and only used simple 

register-register and load/store instructions similar to 801
– Code ran faster than other existing compilers that used all 370 

instructions! (up to 6MIPS whereas 2MIPS considered good before)
§ Emer, Clark, at DEC

– Measured VAX-11/780 using external hardware
– Found it was actually a 0.5MIPS machine, although usually assumed to 

be a 1MIPS machine
– Found 20% of VAX instructions responsible for 60% of microcode, but 

only account for 0.2% of execution time!

§ VAX8800
– Control Store: 16K*147b RAM, Unified Cache: 64K*8b RAM
– 4.5x more microstore RAM than cache RAM!



“Iron Law” of Processor Performance
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§ Instructions per program depends on source code, 
compiler technology, and ISA

§ Cycles per instructions (CPI) depends on ISA and 
µarchitecture

§ Time per cycle depends upon the µarchitecture and base 
technology

Time   =   Instructions Cycles    Time
Program         Program     *  Instruction   *  Cycle



Inst 3

CPI for Microcoded Machine
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7 cycles

Inst 1 Inst 2

5 cycles 10 cycles

Total clock cycles = 7+5+10 = 22
Total instructions = 3
CPI = 22/3 = 7.33 
CPI is always an average over a large 
number of instructions.

Time



IC Technology Changes Tradeoffs
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§ Logic, RAM, ROM all implemented using MOS transistors
§ Semiconductor RAM ~ same speed as ROM



Reconsidering Microcode Machine
(Nanocoded 68000 example)
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§ Motorola 68000 had 17-bit µcode containing either 10-bit µjump 
or 9-bit nanoinstruction pointer

– Nanoinstructions were 68 bits wide, decoded to give 196 
control signals

µcode ROM

nanoaddress

µcode 
next-state

µaddress

µPC (state)

nanoinstruction ROM
data

Exploits recurring control 
signal patterns in µcode, 
e.g., 

ALU0 A ← Reg[rs1] 
...
ALUI0 A ← Reg[rs1]
...

User PC

Inst. Cache

Hardwired Decode

RISC!



From CISC to RISC

§ Use fast RAM to build fast instruction cache of user-visible 
instructions, not fixed hardware microroutines

– Contents of fast instruction memory change to fit application needs 

§ Use simple ISA to enable hardwired pipelined 
implementation

– Most compiled code only used few CISC instructions

– Simpler encoding allowed pipelined implementations

§ Further benefit with integration
– In early ‘80s, finally fit 32-bit datapath + small caches on single chip

– No chip crossings in common case allows faster operation
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Berkeley RISC Chips
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RISC-I (1982) Contains 44,420 
transistors, fabbed in 5 µm NMOS, 
with a die area of 77 mm2, ran at 
1 MHz. This chip is probably the 
first VLSI RISC.

RISC-II (1983) contains 40,760 
transistors, was fabbed in 3 
µm NMOS, ran at 3 MHz, and 
the size is 60 mm2.

Stanford built some too…



Microprogramming is far from extinct

§ Played a crucial role in micros of the Eighties
• DEC uVAX, Motorola 68K series, Intel 286/386

§ Plays an assisting role in most modern micros
– e.g., AMD Zen, Intel Sky Lake, Intel Atom, IBM PowerPC, …

– Most instructions executed directly, i.e., with hard-wired control

– Infrequently-used and/or complicated instructions invoke microcode

§ Patchable microcode common for post-fabrication bug 
fixes, e.g. Intel processors load µcode patches at bootup

– Intel had to scramble to resurrect microcode tools and find original 
microcode engineers to patch Meltdown/Spectre security vulnerabilites
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