CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 2 - Simple Machine Implementations

Krste Asanovic
Electrical Engineering and Computer Sciences
University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

Last Time in Lecture 1

= Computer Architecture >> ISAs and RTL

— CS152 is about interaction of hardware and software, and design of
appropriate abstraction layers

* Technology and Applications shape Computer Architecture
— History provides lessons for the future

" First 130 years of CompArch, from Babbage to IBM 360

— Move from calculators (no conditionals) to fully programmable machines

— Rapid change started in WWII (mid-1940s), move from electro-mechanical to
pure electronic processors

" Cost of software development becomes a large constraint on
architecture (need compatibility)

= |[BM 360 introduces notion of “family of machines” running
same ISA but very different implementations

— Six different machines released on same day (April 7, 1964)
— “Future-proofing” for subsequent generations of machine

Instruction Set Architecture (ISA)

= The contract between software and hardware

= Typically described by giving all the programmer-visible
state (registers + memory) plus the semantics of the
instructions that operate on that state

" |IBM 360 was first line of machines to separate ISA from
implementation (aka. microarchitecture)

" Many implementations possible for a given ISA

— E.g., the Soviets build code-compatible clones of the IBM360, as did
Amdahl after he left IBM.

— E.g.2., today you can buy AMD or Intel processors that run the x86-64 ISA.

— E.g.3: many cellphones use the ARM ISA with implementations from many
different companies including Apple, Qualcomm, Samsung, Huawei, etc.

= WWe use Berkeley RISC-V as standard ISA in class

—WWW.riscv.org

ISA to Microarchitecture Mapping

= |[SA often designed with particular microarchitectural style

in mind, e.g.,
Accumulator = hardwired, unpipelined
CISC —> microcoded
RISC = hardwired, pipelined
VLIW = fixed-latency in-order parallel pipelines
JVM —> software interpretation

= But can be implemented with any microarchitectural style
— Intel lvy Bridge: hardwired pipelined CISC (x86)
machine (with some microcode support)
— Spike: Software-interpreted RISC-V machine
— ARM Jazelle: A hardware JVM processor
— This lecture: a microcoded RISC-V machine

Why Learn Microprogramming?

" To show how to build very small processors with complex ISAs

" To help you understand where CISC* machines came from

= Because still used in common machines (x86, IBM360, PowerPC)
" As a gentle introduction into machine structures

To help understand how technology drove the move to RISC

* “CISC”/”RISC” names much newer than style of
machines they refer to.

Control versus Datapath

" Processor designs can be split between datapath, where
numbers are stored and arithmetic operations computed,
and control, which sequences operations on datapath

Control = Biggest challenge for early

LT condition? computer designers was getting
control circuitry correct

= Maurice Wilkes invented the
idea of microprogramming to
design the control unit of a

: processor for EDSAC-II, 1958
Busy? Afdress bata — Foreshadowed by Babbage’s
“Barrel” and mechanisms in
earlier programmable calculators

N N
Instruction Cirt'cl
\ 4 \ 4

< —
-]
(D
v\
7

pd
T~
pd
T~

Datapath
PC
Inst. Reg
Registers
Alu £

Main Memory

Microcoded CPU

;L ,l, v Vv Next State

wpC~ ¥
v , .
v |5 Microcode ROM !
‘;> § = Decoder (holds fixed code

> & |c instructions)

! ! Uy l Control Lines

Datapath
Address Data

Main Memory
(holds user program written in macroinstructions, e.qg., x86, RISC-V)

Technology Influence

" When microcode appeared in 1950s, different
technologies for:

— Logic: Vacuum Tubes
— Main Memory: Magnetic cores

— Read-Only Memory: Diode matrix, punched metal
cards, ...

" Logic very expensive compared to ROM or RAM
" ROM cheaper than RAM
" ROM much faster than RAM

RISC-V ISA

" New fifth-generation RISC design from UC Berkeley

" Realistic & complete ISA, but open & small

" Not over-architected for a certain implementation style

" Both 32-bit (RV32) and 64-bit (RV64) address-space variants
" Designed for multiprocessing

= Efficient instruction encoding

= Easy to subset/extend for education/research

= RISC-V spec available on Foundation website and github

" Increasing momentum with industry adoption

= Please see CS61C Fall 2017, Lectures 5-7 for RISC-V ISA review:
http://inst.eecs.berkeley.edu/~cs6lc/£fal7/

RV32 Processor State

XLEN-1 0 FLEN-1
x0 / zero f0
x1 f1
x2 f2
x3 £3
x4 fa
Program counter (pc) x5 £5
x6 f6
x7 £7
32x32-bit integer registers (x0-x31) = =
* x0 always contains a 0 X0 iy
x12 f12
. . . x13 f13
32 floating-point (FP) registers (fO-f31) x14 £14
* each can contain a single- or double- it is
precision FP value (32-bit or 64-bit =1 i
IEEE FP) x19 119
x20 £20
x21 f21
FP status register (fcsr), used for FP = 25
rounding mode & exception reporting 2 =
x26 £26
x27 f27
x28 £28
x29 £29
x30 £30
x31 £31
XLEN FLEN
XLEN-1 0 31
pc]| fcsr

XLEN 32

RISC-V Instruction Encoding

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXaa

XXXXXXxxxxxbbbil1l

+ 1 XXXX

AXAXXXXXXXAXXXXXX

xxxxxxxxxx011111

¢+ XXXX

XXXXXXXXXXXXXXXX

xxxxxxxxx0111111

+ o XXXX

XXX XXXXXXAXXXXXX

xnnnxxxxx1111111

¢ XXXX

XXX XXXXXXAXXXXXX

x11ixxxxx1111111

Byte Address: base+4

base+2

base

= Can support variable-length instructions.

= Base instruction set (RV32) always has fixed 32-bit
instructions lowest two bits = 11,

16-bit (aa # 11)

32-bit (bbb # 111)

48-bit

64-bit

(80+16*nnn)-bit, nnn#111

Reserved for >192-bits

= All branches and jumps have targets at 16-bit granularity
(even in base ISA where all instructions are fixed 32 bits)

11

RISC-V Instruction Formats

7-bit opcode
opcode Reg. bits =11,)
bits/immediate
j Reg. Source 1 \
31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
funct? rs2 rsl funct3 rd opcode | R-type
imm|[11:0] rsl funct3 rd opcode | I-type
imm|[11:5] rs2 rsl funct3 imm|[4:0] opcode | S-type
imm(12] | imm[10:5] rs2 rsl funct3 |imm|4:1] | imm[11] | opcode | B-type
imm|31:12] rd opcode | U-type
imm|[20)] imm|[10:1] imm|[11] imm[19:12] rd opcode | J-type

12

Single-Bus Datapath for Microcoded RISC-V

Opcode _ Condition? Busy?
_ E’EESQ&{@ - %
=BE: g 8l 108
2 | E RegSe_ﬁ\— D\T, 5 2 >
\ i Address DT/ j; v
&b <§,: ek om0) ﬁ
g et o 9 mPN\m b -
sHel 8|2 |]]2 S 2 A3y Main
i o 7 9 < Z."' Memory
O o0 -
>
ru E v Q
A e NI >
= - Data Out In A
l 3 [T
<
ImmE l RegEn ig ALUEni MemEn

Microinstructions written as register transfers:

* MA:=PC means RegSel=PC; RegW=0; RegEn=1; MALd=1

" B:=Reg[rs2] means RegSel=rs2; RegW=0; RegEn=1; BLd=1

* Reg[rd]:=A+B means ALUop=Add; ALUEn=1; RegSel=rd; RegW=1 13

RISC-V Instruction Execution Phases

" [nstruction Fetch

" |[nstruction Decode

= Register Fetch

= ALU Operations

= Optional Memory Operations

= Optional Register Writeback

= Calculate Next Instruction Address

14

Instruction Fetch:

ALU:

ALUI:

Microcode Sketches (1)

MA,A:=PC

PC:=A+4

wait for memory
IR:=Mem

dispatch on opcode

A:=Reg|rs1]
B:=Reg|rs2]
Reg[rd]:=ALUOp(A,B)
goto instruction fetch

A:=Reg|rs1]

B:=Imml //Sign-extend 12b immediate
Reg[rd]:=ALUOp(A,B)

goto instruction fetch

15

LW:

JAL:

Branch:

Microcode Sketches (2)

A:=Reg|rs1]

B:=Imml //Sign-extend 12b immediate
MA:=A+B

wait for memory

Reg[rd]:=Mem

goto instruction fetch

Reg[rd]:=A // Store return address

A:=A-4 // Recover original PC

B:=ImmJ // Jump-style immediate

PC:=A+B

goto instruction fetch

A:=Reg|rs1]

B:=Reg|rs2]

if (IALUOp(A,B)) goto instruction fetch //Not taken
A:=PC //Microcode fall through if branch taken
A:=A-4

B:=ImmB// Branch-style immediate

PC:=A+B

goto instruction fetch

16

Pure ROM Implementation

Opcode Cond? Busy?

. u;DC N] |
I l Vool
\ Jf ’
Address
ROM
Data
Next uPC lControI Signals

" How many address bits?
|paddress| = |[uPC|+|opcode|+1+ 1

" How many data bits?
|data| = |uPC|+]|control signals| = |uPC| + 18
= Total ROM size = 2Inaddress|y | data|

17

Pure ROM Contents

Address | Data

UPC Opcode Cond? Busy? | Control Lines Next uPC
fetchO0 X X X | MA,A:=PC fetchl
fetchl X X 1 | fetchl
fetchl X X 0 | IR:=Mem fetch2
fetch2 ALU X X | PC:=A+4 ALUO
fetch2 ALUI X X | PC:=A+4 ALUIO
fetch2 LW X X | PC:=A+4 LWO
ALUO X X X | A:=Reg]rs1] ALU1
ALU1 X X X | B:=Reg[rs2] ALU2

ALU2 X X X | Reg[rd]:=ALUOPp(A,B) fetchO

Single-Bus Microcode RISC-V ROM Size

" |nstruction fetch sequence 3 common steps
= ~12 instruction groups

= Each group takes ~5 steps (1 for dispatch)

" Total steps 3+12*5 = 63, needs 6 bits for uPC

= Opcode is 5 bits, ~18 control signals

= Total size = 2(6+5+2)x(6+18)=213x24 = ~25KiB!

19

Reducing Control Store Size

= Reduce ROM height (#address bits)

— Use external logic to combine input signals
— Reduce #states by grouping opcodes

= Reduce ROM width (#data bits)

— Restrict pPC encoding (next,dispatch,wait on memory,...)
— Encode control signals (vertical pcoding, nanocoding)

20

Single-Bus RISC-V Microcode Engine

Opcode fetchO

+1

Decode l
X 5
n UPC
Cond2—{ uPC Jump Address
Busy? - Logic ROM
Data
UPC jump

lControI Signals

UPC jump = next | spin | fetch | dispatch | ftrue | ffalse

21

MPC Jump Types

= next increments puPC

" spin waits for memory

= fetch jumps to start of instruction fetch

" dispatch jumps to start of decoded opcode group
= ftrue/ffalse jumps to fetch if Cond? true/false

22

Encoded ROM Contents

Address | Data

UPC | Control Lines Next uPC
fetchO | MA,A:=PC next
fetchl | IR:=Mem spin
fetch2 | PC:=A+4 dispatch
ALUO | A:=Reg]rs1] next
ALU1 | B:=Reg[rs2] next
ALU2 | Reg[rd]:=ALUOp(A,B) fetch
BranchO | A:=Reg]rs1] next
Branchl | B:=Reg[rs2] next
Branch2 | A:=PC ffalse
Branch3 | A:=A-4 next
Branch4 | B:=ImmB next
Branch5 | PC:=A+B fetch

23

CS152 Administrivia

" Grading clarifications
— You must complete 3/5 labs or get an automatic F regardless of other
grades
= Slip days
— Problem sets have no slip days

— Labs have two free extensions (max one per lab) until next class after
due date

— No other extensions without documented emergency

24

CS252 Administrivia

= CS252 Readings on Website

— Must use Piazza to send private note on each per paper thread to
instructors before midnight Sunday before Monday discussion
containing paper report:

* Write one paragraph on main content of paper including good/bad
points of paper

* Also, 1-3 questions about paper for discussion
* First two “360 Architecture”, “B5000 Architecture”

" CS252 Project Timeline

— Proposal due start of class Wed Feb 27th

— One page including:
* project title
* team members (2 per project)
* what problem are you trying to solve?
* what is your approach?
* infrastructure to be used
* timeline/milestones

Implementing Complex Instructions
Memory-memory add: M[rd] = M[rs1] + M[rs2]

Address | Data
UPC | Control Lines Next uPC
MMAO | MA:=Reg[rs1] next
MMA1 | A:=Mem spin
MMA2 | MA:=Reg[rs2] next
MMA3 | B:=Mem spin
MMA4 | MA:=Reg[rd] next
MMADS | Mem:=ALUOp(A,B) spin
MMA6 | fetch

Complex instructions usually do not require datapath modifications, only

extra space for control program

Very difficult to implement these instructions using a hardwired controller
without substantial datapath modifications

26

Single-Bus Datapath for Microcoded RISC-V

Opcode _ Condition? Busy?
_ EEESE@ - %
2 |2 E 8| £ ¢
2 | E RegSe_ﬁ\— D\i 5 2 >
\ i Address 0\?’ j; v
&b <§,: ek om0) ﬁ
g et o 9 mPN\m b -
sHel 8|2 |]]2 S 2 A3y Main
i o 7 9 < Z."' Memory
O o0 -
>
el E v)
A e NI >
= - Data Out In A~
l 3 [T
<
ImmE l RegEn ig ALUEni MemEn

Datapath unchanged for complex instructions!

Horizontal vs Vertical pCode

— Bits per pinstruction

A

pinstructions

I I v

" Horizontal pcode has wider pinstructions

— Multiple parallel operations per pinstruction
— Fewer microcode steps per macroinstruction
— Sparser encoding = more bits

= Vertical pcode has narrower pinstructions

— Typically a single datapath operation per puinstruction
= separate pinstruction for branches

— More microcode steps per macroinstruction

— More compact = less bits

" Nanocoding

— Tries to combine best of horizontal and vertical pcode

28

Nanocoding

Exploits recurring control LPC (state) ucode
signal patterns in pcode, I next-state
e.g., pnaddress

ucode ROM
ALUO A < Reglrsl]

nanoaddress

ALUIO A <& Reg|rsl]
nanoinstruction ROM

data

NREREREN

" Motorola 68000 had 17-bit pcode containing either 10-bit pjump

or 9-bit nanoinstruction pointer

— Nanoinstructions were 68 bits wide, decoded to give 196

control signals

29

Microprogramming in IBM 360

M30 M40 M50 M65
Datapath width (bits) 8 16 32 64
winst width (bits) 50 52 85 87
pucode size (K pinsts) 4 4 2.75 2.75
pstore technology CCROS| TCROS BCROS| BCROS
ustore cycle (ns) 750 625 500 200
memory cycle (ns) 1500 2500 2000 750
Rental fee (SK/month) 4 7 15 35

= Only the fastest models (75 and 95) were hardwired

30

IBM Card-Capacitor Read-Only Storage

sensing
olates

: P

P

'[' Journal, January 1961] 31

Microcode Emulation

" [BM initially miscalculated the importance of software
compatibility with earlier models when introducing the 360
series

" Honeywell stole some IBM 1401 customers by offering
translation software (“Liberator”) for Honeywell H200 series
machine

" |[BM retaliated with optional additional microcode for 360
series that could emulate IBM 1401 ISA, later extended for
IBM 7000 series

— one popular program on 1401 was a 650 simulator, so some customers ran
many 650 programs on emulated 1401s

— i.e., 650 simulated on 1401 emulated on 360

32

Microprogramming thrived in ‘60s and ‘70s

= Significantly faster ROMs than DRAMs were available

" For complex instruction sets, datapath and controller were
cheaper and simpler

= New instructions, e.g., floating point, could be supported
without datapath modifications

= Fixing bugs in the controller was easier

= |SA compatibility across various models could be achieved
easily and cheaply

Except for the cheapest and fastest machines, all
computers were microprogrammed

33

Microprogramming: early 1980s

" Evolution bred more complex micro-machines

— Complex instruction sets led to need for subroutine and call stacks in
pcode

— Need for fixing bugs in control programs was in conflict with read-only
nature of uROM

— =»Writable Control Store (WCS) (B1700, QMachine, Intel i432, ...)

= With the advent of VLSI technology assumptions about ROM &
RAM speed became invalid 2> more complexity

" Better compilers made complex instructions less important.

= Use of numerous micro-architectural innovations, e.g.,
pipelining, caches and buffers, made multiple-cycle execution
of reg-reg instructions unattractive

34

VAX 11-780 Microcode

¥

1 PIWFUD,!)1600,1205) MICRO2 1F(12) 26=May=81 14:5811 VAX11/780 Microcode : PCS 01, FPLA 0D, wCs122 . ‘age 171
3 CALL2 ,Mic (600,1205) Procedure call ¢t CALLG, CALLS .
133744 JHERE FOR CALLG OR CALLS, AFTER PROBING THE EXTENT OF THE STACK
129745
229746 =0 jeoncecccnsnccsncnnnanancnncscne)CALL SITE FOR MPUSH
129747 CALL,7: D.Q,AND,RCI[T2), JSTRIP MASK TO BITS 1i=0
65%57K 0 11F4, 0811,2035,0180,F910,0000,0CDS8 129748 CALL,J/MPUSH ?PUSH REGISTERS
129749
229750 joercenannenanennannannsnscancencees) RETURN FROM MPUSH
3297514 CACHE.D([LONG), 1PUSH PC
6557K 7763K 11F5, 0000,003C,0180,3270,0000,134A 129752 LABLR[SP) ! BY SP
129753
229754 jereecncccrancccnsnacncennennoane
6856K 0 U 134A, 0018,0000,0180,FAF0,0200,134C 129755 CALL.8t RISP)&VALLA=K(,8) JUPDATE SP FOR PUSH OF PC &
129756 :
21297%7 jerecccsnncrnsncncnnsnnnessnanncn)
6856K 0 134C, 0800,003C,0180,FA68,0000,11F8 129758 DaR(FP)) JREADY TO PUSH FRAME POINTER
$129759
229760 =0 jeranconscrsnnoncccnsnnnnnennsnss)CALL SITE FOR PSHSP
129761 CACHE.D[LONG],)STORE FP,
129762 LAB_R(SP], ? GET SP AGAIN
s 129763 SC.K[.FFFO), 1=16 TO SC
6856K 21M 11F8, 0000,003D,6D80,3270,0084,6CD9 129764 CALL,J/PSHSP
129765
229766 jerasncnccrannsrenscsnccnasncsnas)
7 129767 D.R(AP], JREADY TO PUSH AP
6856K 0 11F9, 0800,003C,3Dr0,2E60,0000,134D 129768 Q.ID([PSL] ? AND GET PSW FOR COMBINATIO
129769 :
2129770 jeneconncanannessonsnncncnnasane)
129771 CACHE.D[LONG), $STORE OLD AP
: 129772 Q.0,ANDNOT,K(.1F), $CLEAR PSW<CT,N,2,V,C>
6856K 21M 134D, 0019,2024,80C0,3270,0000,134E 129773 LAR.R([SP) JGET SP INTO LATCHES AGAIN
129774 :
$29778 jeecnrrnonsannernscasncasanancna) ’
6856K 0 134€, 2010,0038,0180,F909,4200,1350 129776 PC&VA.RC(T1], FLUSH,IB ? LOAD NEW PC AND CLEAR OUT
129777
229778 jempensnnennnccccnsensenscansnene)
$29779 D.DAL,SC,)PSW TO D<31116>
129780 0.RCIT2), JRECOVER MASK
129781 SC.SC+K([,3), JPUT «13 IN SC
6856K 0 1350, 0D10,0038,0DC0,6114,0084,9351 129782 LOAD,1B, PC.PC+! JSTART FETCHING SUBROUTINE I
929783
'29784 jerecccncscancannnccnncacsannnane)
129785 D.DAL,SC, JMASK AND PSW IN D<31:03>
129786 0.RCIT4), $GET LOW BITS OF OLD SP TO Q<1:0>
6856K 0 1381, 0D10,0038,F5C0,F920,0084,9352 129787 SC.SC+K[,A) JPUT =3 IN SC
: 129788

I

Writable Control Store (WCS)

" Implement control store in RAM not ROM

MOS SRAM memories now almost as fast as control store (core
memories/DRAMs were 2-10x slower)

Bug-free microprograms difficult to write

= User-WCS provided as option on several minicomputers

Allowed users to change microcode for each processor

= User-WCS failed

Little or no programming tools support

Difficult to fit software into small space

Microcode control tailored to original ISA, less useful for others
Large WCS part of processor state - expensive context switches
Protection difficult if user can change microcode

Virtual memory required restartable microcode

36

Analyzing Microcoded Machines

= John Cocke and group at IBM

— Working on a simple pipelined processor, 801, and advanced compilers
inside IBM

— Ported experimental PL.8 compiler to IBM 370, and only used simple
register-register and load/store instructions similar to 801

— Code ran faster than other existing compilers that used all 370
instructions! (up to 6MIPS whereas 2MIPS considered good before)

= Emer, Clark, at DEC
— Measured VAX-11/780 using external hardware

— Found it was actually a 0.5MIPS machine, although usually assumed to
be a 1MIPS machine

— Found 20% of VAX instructions responsible for 60% of microcode, but
only account for 0.2% of execution time!

= \VAX8800
— Control Store: 16K*147b RAM, Unified Cache: 64K*8b RAM
— 4.5x more microstore RAM than cache RAM!

37

“lron Law” of Processor Performance

Time = |Instructions Cycles Time
Program Program * Instruction * Cycle

" Instructions per program depends on source code,
compiler technology, and ISA

» Cycles per instructions (CPI) depends on ISA and
uarchitecture

" Time per cycle depends upon the parchitecture and base
technology

38

CPI for Microcoded Machine

7 cycles 5 cycles 10 cycles
A A A
[Inst 1 Y'onst2 Y Inst 3)

(LI TTTTTTITITTTTTITTT]

Time —

Total clock cycles = 74+5+10 = 22
Total instructions =3
CPI=22/3=7.33

CPl is always an average over a large
number of instructions.

39

IC Technology Changes Tradeoffs

" Logic, RAM, ROM all implemented using MOS transistors
= Semiconductor RAM ~ same speed as ROM

40

Recagasidering Microcode Machine
ocoded 68000 examg

ucode

Exploit$ecurring control
next-state

signal patterns in pcode,
e.g.,

ALUO A <& Reg|rsl]

ALUIO A <& Reg|rsl]

" Motorola 68000 had 17-bit ®Code containing either 10-bit yjump
or 9-bit nanoinstruction pointer
— Nanoinstructions were 68 bits wide, decoded to give 196

control signals
41

From CISC to RISC

= Use fast RAM to build fast instruction cache of user-visible
instructions, not fixed hardware microroutines
— Contents of fast instruction memory change to fit application needs

= Use simple ISA to enable hardwired pipelined
implementation
— Most compiled code only used few CISC instructions
— Simpler encoding allowed pipelined implementations

" Further benefit with integration

— In early ‘80s, finally fit 32-bit datapath + small caches on single chip
— No chip crossings in common case allows faster operation

42

RISC-I (1982) Contains 44,420
transistors, fabbed in 5 um NMOS,
with a die area of 77 mm?, ran at
1 MHz. This chip is probably the
first VLSI RISC.

o s ey e e i ety
H N R N N E N NN

| = RISC-II (1983) contains 40,760
- transistors, was fabbed in 3

" 5. um NMOS, ran at 3 MHz, and
~ 2 the size is 60 mm?2.

Stanford built some too...
43

Microprogramming is far from extinct

" Played a crucial role in micros of the Eighties
* DEC uVAX, Motorola 68K series, Intel 286/386

" Plays an assisting role in most modern micros
— e.g., AMD Zen, Intel Sky Lake, Intel Atom, IBM PowerPC, ...
— Most instructions executed directly, i.e., with hard-wired control
— Infrequently-used and/or complicated instructions invoke microcode

" Patchable microcode common for post-fabrication bug
fixes, e.g. Intel processors load pcode patches at bootup

— Intel had to scramble to resurrect microcode tools and find original
microcode engineers to patch Meltdown/Spectre security vulnerabilites

44

Acknowledgements

" These slides contain material developed and copyright by:
— Arvind (MIT)
— Krste Asanovic (MIT/UCB)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)

= MIT material derived from course 6.823
= UCB material derived from course CS252

45

