
CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 2 - Simple Machine Implementations

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

Last Time in Lecture 1
§ Computer Architecture >> ISAs and RTL

– CS152 is about interaction of hardware and software, and design of
appropriate abstraction layers

§ Technology and Applications shape Computer Architecture
– History provides lessons for the future

§ First 130 years of CompArch, from Babbage to IBM 360
– Move from calculators (no conditionals) to fully programmable machines
– Rapid change started in WWII (mid-1940s), move from electro-mechanical to

pure electronic processors

§ Cost of software development becomes a large constraint on
architecture (need compatibility)

§ IBM 360 introduces notion of “family of machines” running
same ISA but very different implementations

– Six different machines released on same day (April 7, 1964)
– “Future-proofing” for subsequent generations of machine

2

Instruction Set Architecture (ISA)

§ The contract between software and hardware

§ Typically described by giving all the programmer-visible

state (registers + memory) plus the semantics of the

instructions that operate on that state

§ IBM 360 was first line of machines to separate ISA from

implementation (aka. microarchitecture)

§ Many implementations possible for a given ISA

– E.g., the Soviets build code-compatible clones of the IBM360, as did

Amdahl after he left IBM.

– E.g.2., today you can buy AMD or Intel processors that run the x86-64 ISA.

– E.g.3: many cellphones use the ARM ISA with implementations from many

different companies including Apple, Qualcomm, Samsung, Huawei, etc.

§ We use Berkeley RISC-V as standard ISA in class

– www.riscv.org

3

ISA to Microarchitecture Mapping

§ ISA often designed with particular microarchitectural style
in mind, e.g.,

Accumulator Þ hardwired, unpipelined
CISC Þ microcoded
RISC Þ hardwired, pipelined
VLIW Þ fixed-latency in-order parallel pipelines
JVM Þ software interpretation

§ But can be implemented with any microarchitectural style
– Intel Ivy Bridge: hardwired pipelined CISC (x86)

machine (with some microcode support)
– Spike: Software-interpreted RISC-V machine
– ARM Jazelle: A hardware JVM processor
– This lecture: a microcoded RISC-V machine

4

Why Learn Microprogramming?

§To show how to build very small processors with complex ISAs
§To help you understand where CISC* machines came from
§Because still used in common machines (x86, IBM360, PowerPC)
§As a gentle introduction into machine structures
§To help understand how technology drove the move to RISC*

* “CISC”/”RISC” names much newer than style of
machines they refer to.

5

Control versus Datapath

§ Processor designs can be split between datapath, where

numbers are stored and arithmetic operations computed,

and control, which sequences operations on datapath

6

§ Biggest challenge for early

computer designers was getting

control circuitry correct

§ Maurice Wilkes invented the

idea of microprogramming to

design the control unit of a

processor for EDSAC-II, 1958

- Foreshadowed by Babbage’s

“Barrel” and mechanisms in

earlier programmable calculators

Condition?

Control

Main Memory

Address Data

Control Lines

D
a

ta
p

a
th

P
C

In
s
t.

 R
e

g
.

R
e

g
is

te
rs

A
L
U

Instruction

Busy?

Microcoded CPU

7

Datapath

Main Memory
(holds user program written in macroinstructions, e.g., x86, RISC-V)

Address Data

Decoder

µPC
Microcode ROM
(holds fixed µcode
instructions)

Next State

Control Lines

Op
co

de

Co
nd

iti
on

Bu
sy

?

Technology Influence

§ When microcode appeared in 1950s, different
technologies for:

– Logic: Vacuum Tubes
– Main Memory: Magnetic cores
– Read-Only Memory: Diode matrix, punched metal

cards, …

§ Logic very expensive compared to ROM or RAM
§ ROM cheaper than RAM
§ ROM much faster than RAM

8

RISC-V ISA
§ New fifth-generation RISC design from UC Berkeley
§ Realistic & complete ISA, but open & small
§ Not over-architected for a certain implementation style
§ Both 32-bit (RV32) and 64-bit (RV64) address-space variants
§ Designed for multiprocessing
§ Efficient instruction encoding
§ Easy to subset/extend for education/research
§ RISC-V spec available on Foundation website and github
§ Increasing momentum with industry adoption

§ Please see CS61C Fall 2017, Lectures 5-7 for RISC-V ISA review:
http://inst.eecs.berkeley.edu/~cs61c/fa17/

9

RV32 Processor State

10

Program counter (pc)

32x32-bit integer registers (x0-x31)
• x0 always contains a 0

32 floating-point (FP) registers (f0-f31)
• each can contain a single- or double-
precision FP value (32-bit or 64-bit
IEEE FP)

FP status register (fcsr), used for FP
rounding mode & exception reporting

RISC-V Instruction Encoding

§ Can support variable-length instructions.
§ Base instruction set (RV32) always has fixed 32-bit

instructions lowest two bits = 112

§ All branches and jumps have targets at 16-bit granularity
(even in base ISA where all instructions are fixed 32 bits)

11

RISC-V Instruction Formats

12

Destination
Reg.

Reg. Source 1

Reg. Source 2
7-bit opcode
field (but low 2
bits =112)

Additional
opcode
bits/immediate

Single-Bus Datapath for Microcoded RISC-V

13

Microinstructions written as register transfers:

§ MA:=PC means RegSel=PC; RegW=0; RegEn=1; MALd=1

§ B:=Reg[rs2] means RegSel=rs2; RegW=0; RegEn=1; BLd=1

§ Reg[rd]:=A+B means ALUop=Add; ALUEn=1; RegSel=rd; RegW=1

Condition?

Main

Memory

P
C

R
e

g
is

t
e

r
s

A
L
U

3
2

(
P

C
)

r
d

r
s
1

r
s
2

R
e

g
is

t
e

r
 R

A
M

Address

InData OutIn
s
t
r
u

c
t
io

n
 R

e
g

.

M
e

m
.

A
d

d
r
e

s
s

B
A

Im
m

e
d

ia
t
e

ImmEn RegEn ALUEn MemEn

A
L
U

O
p

M
e

m
W

Im
m

S
e

l

R
e

g
W

B
L
dIn

s
t
L
d

M
A

L
d

A
L
d

RegSel

Busy?Opcode

RISC-V Instruction Execution Phases

§ Instruction Fetch
§ Instruction Decode
§ Register Fetch
§ ALU Operations
§ Optional Memory Operations
§ Optional Register Writeback
§ Calculate Next Instruction Address

14

Microcode Sketches (1)

15

Instruction Fetch: MA,A:=PC

PC:=A+4

wait for memory
IR:=Mem

dispatch on opcode

ALU: A:=Reg[rs1]

B:=Reg[rs2]

Reg[rd]:=ALUOp(A,B)

goto instruction fetch

ALUI: A:=Reg[rs1]

B:=ImmI //Sign-extend 12b immediate

Reg[rd]:=ALUOp(A,B)

goto instruction fetch

Microcode Sketches (2)

16

LW: A:=Reg[rs1]
B:=ImmI //Sign-extend 12b immediate
MA:=A+B
wait for memory
Reg[rd]:=Mem
goto instruction fetch

JAL: Reg[rd]:=A // Store return address
A:=A-4 // Recover original PC
B:=ImmJ // Jump-style immediate
PC:=A+B
goto instruction fetch

Branch: A:=Reg[rs1]
B:=Reg[rs2]
if (!ALUOp(A,B)) goto instruction fetch //Not taken
A:=PC //Microcode fall through if branch taken
A:=A-4
B:=ImmB// Branch-style immediate
PC:=A+B
goto instruction fetch

Pure ROM Implementation

17

§ How many address bits?
|µaddress| = |µPC|+|opcode|+ 1 + 1

§ How many data bits?
|data| = |µPC|+|control signals| = |µPC| + 18

§ Total ROM size = 2|µaddress|x|data|

µPC

ROM
Address

Data

Opcode Cond? Busy?

Next µPC Control Signals

Pure ROM Contents

18

Address | Data
µPC Opcode Cond? Busy? | Control Lines Next µPC
fetch0 X X X | MA,A:=PC fetch1
fetch1 X X 1 | fetch1
fetch1 X X 0 | IR:=Mem fetch2
fetch2 ALU X X | PC:=A+4 ALU0
fetch2 ALUI X X | PC:=A+4 ALUI0
fetch2 LW X X | PC:=A+4 LW0
….

ALU0 X X X | A:=Reg[rs1] ALU1
ALU1 X X X | B:=Reg[rs2] ALU2
ALU2 X X X | Reg[rd]:=ALUOp(A,B) fetch0

Single-Bus Microcode RISC-V ROM Size

§ Instruction fetch sequence 3 common steps
§ ~12 instruction groups
§ Each group takes ~5 steps (1 for dispatch)
§ Total steps 3+12*5 = 63, needs 6 bits for µPC

§ Opcode is 5 bits, ~18 control signals

§ Total size = 2(6+5+2)x(6+18)=213x24 = ~25KiB!

19

Reducing Control Store Size

§ Reduce ROM height (#address bits)
– Use external logic to combine input signals
– Reduce #states by grouping opcodes

§ Reduce ROM width (#data bits)
– Restrict µPC encoding (next,dispatch,wait on memory,…)
– Encode control signals (vertical µcoding, nanocoding)

20

Single-Bus RISC-V Microcode Engine

21

µPC

Decode

ROM
Address

Data

Opcode

Cond?
Busy?

Control Signals

+1

fetch0

µPC Jump
Logic

µPC jump

µPC jump = next | spin | fetch | dispatch | ftrue | ffalse

µPC Jump Types

§ next increments µPC
§ spin waits for memory
§ fetch jumps to start of instruction fetch
§ dispatch jumps to start of decoded opcode group
§ ftrue/ffalse jumps to fetch if Cond? true/false

22

Encoded ROM Contents

23

Address | Data
µPC | Control Lines Next µPC
fetch0 | MA,A:=PC next
fetch1 | IR:=Mem spin
fetch2 | PC:=A+4 dispatch

ALU0 | A:=Reg[rs1] next
ALU1 | B:=Reg[rs2] next
ALU2 | Reg[rd]:=ALUOp(A,B) fetch

Branch0 | A:=Reg[rs1] next
Branch1 | B:=Reg[rs2] next
Branch2 | A:=PC ffalse
Branch3 | A:=A-4 next
Branch4 | B:=ImmB next
Branch5 | PC:=A+B fetch

CS152 Administrivia

§ Grading clarifications
– You must complete 3/5 labs or get an automatic F regardless of other

grades

§ Slip days
– Problem sets have no slip days
– Labs have two free extensions (max one per lab) until next class after

due date
– No other extensions without documented emergency

24

CS252 Administrivia

§ CS252 Readings on Website
– Must use Piazza to send private note on each per paper thread to

instructors before midnight Sunday before Monday discussion
containing paper report:
• Write one paragraph on main content of paper including good/bad

points of paper
• Also, 1-3 questions about paper for discussion
• First two “360 Architecture”, “B5000 Architecture”

§ CS252 Project Timeline
– Proposal due start of class Wed Feb 27th
– One page including:

• project title
• team members (2 per project)
• what problem are you trying to solve?
• what is your approach?
• infrastructure to be used
• timeline/milestones

25

Implementing Complex Instructions

26

Memory-memory add: M[rd] = M[rs1] + M[rs2]

Address | Data
µPC | Control Lines Next µPC
MMA0 | MA:=Reg[rs1] next
MMA1 | A:=Mem spin
MMA2 | MA:=Reg[rs2] next
MMA3 | B:=Mem spin
MMA4 | MA:=Reg[rd] next
MMA5 | Mem:=ALUOp(A,B) spin
MMA6 | fetch

Complex instructions usually do not require datapath modifications, only
extra space for control program

Very difficult to implement these instructions using a hardwired controller
without substantial datapath modifications

Single-Bus Datapath for Microcoded RISC-V

27

Datapath unchanged for complex instructions!

Condition?

Main
Memory

PC

Re
gi

st
er

s

AL
U

32

(P
C)

rdrs
1

rs
2

Re
gi

st
er

 R
AM

Address

InData OutIn
st

ru
ct

io
n

Re
g.

M
em

. A
dd

re
ssB

AIm
m

ed
ia

te

ImmEn RegEn ALUEn MemEn

AL
U

O
p

M
em

W

Im
m

Se
l

Re
gW

BL
dIn

st
Ld

M
AL

d

AL
d

RegSel

Busy?Opcode

Horizontal vs Vertical µCode

28

§ Horizontal µcode has wider µinstructions
– Multiple parallel operations per µinstruction
– Fewer microcode steps per macroinstruction
– Sparser encoding Þ more bits

§ Vertical µcode has narrower µinstructions
– Typically a single datapath operation per µinstruction

§ separate µinstruction for branches
– More microcode steps per macroinstruction
– More compact Þ less bits

§ Nanocoding
– Tries to combine best of horizontal and vertical µcode

µInstructions

Bits per µInstruction

Nanocoding

29

§ Motorola 68000 had 17-bit µcode containing either 10-bit µjump
or 9-bit nanoinstruction pointer

– Nanoinstructions were 68 bits wide, decoded to give 196
control signals

µcode ROM

nanoaddress

µcode
next-state

µaddress

µPC (state)

nanoinstruction ROM
data

Exploits recurring control
signal patterns in µcode,
e.g.,

ALU0 A ← Reg[rs1]
...
ALUI0 A ← Reg[rs1]
...

Microprogramming in IBM 360

30

§ Only the fastest models (75 and 95) were hardwired

M30 M40 M50 M65
Datapath width (bits) 8 16 32 64

µinst width (bits) 50 52 85 87

µcode size (K µinsts) 4 4 2.75 2.75

µstore technology CCROS TCROS BCROS BCROS

µstore cycle (ns) 750 625 500 200

memory cycle (ns) 1500 2500 2000 750

Rental fee ($K/month) 4 7 15 35

IBM Card-Capacitor Read-Only Storage

31
[IBM Journal, January 1961]

Punched Card with
metal film

Fixed
sensing
plates

Microcode Emulation

32

§ IBM initially miscalculated the importance of software
compatibility with earlier models when introducing the 360
series

§ Honeywell stole some IBM 1401 customers by offering
translation software (“Liberator”) for Honeywell H200 series
machine

§ IBM retaliated with optional additional microcode for 360
series that could emulate IBM 1401 ISA, later extended for
IBM 7000 series

– one popular program on 1401 was a 650 simulator, so some customers ran
many 650 programs on emulated 1401s

– i.e., 650 simulated on 1401 emulated on 360

Microprogramming thrived in ‘60s and ‘70s

33

§ Significantly faster ROMs than DRAMs were available
§ For complex instruction sets, datapath and controller were

cheaper and simpler
§ New instructions , e.g., floating point, could be supported

without datapath modifications
§ Fixing bugs in the controller was easier
§ ISA compatibility across various models could be achieved

easily and cheaply

Except for the cheapest and fastest machines, all
computers were microprogrammed

Microprogramming: early 1980s

34

§ Evolution bred more complex micro-machines
– Complex instruction sets led to need for subroutine and call stacks in

µcode
– Need for fixing bugs in control programs was in conflict with read-only

nature of µROM
– èWritable Control Store (WCS) (B1700, QMachine, Intel i432, …)

§ With the advent of VLSI technology assumptions about ROM &
RAM speed became invalid àmore complexity

§ Better compilers made complex instructions less important.
§ Use of numerous micro-architectural innovations, e.g.,

pipelining, caches and buffers, made multiple-cycle execution
of reg-reg instructions unattractive

VAX 11-780 Microcode

35

Writable Control Store (WCS)

36

§ Implement control store in RAM not ROM
– MOS SRAM memories now almost as fast as control store (core

memories/DRAMs were 2-10x slower)
– Bug-free microprograms difficult to write

§ User-WCS provided as option on several minicomputers
– Allowed users to change microcode for each processor

§ User-WCS failed
– Little or no programming tools support
– Difficult to fit software into small space
– Microcode control tailored to original ISA, less useful for others
– Large WCS part of processor state - expensive context switches
– Protection difficult if user can change microcode
– Virtual memory required restartable microcode

Analyzing Microcoded Machines

37

§ John Cocke and group at IBM
– Working on a simple pipelined processor, 801, and advanced compilers

inside IBM
– Ported experimental PL.8 compiler to IBM 370, and only used simple

register-register and load/store instructions similar to 801
– Code ran faster than other existing compilers that used all 370

instructions! (up to 6MIPS whereas 2MIPS considered good before)
§ Emer, Clark, at DEC

– Measured VAX-11/780 using external hardware
– Found it was actually a 0.5MIPS machine, although usually assumed to

be a 1MIPS machine
– Found 20% of VAX instructions responsible for 60% of microcode, but

only account for 0.2% of execution time!

§ VAX8800
– Control Store: 16K*147b RAM, Unified Cache: 64K*8b RAM
– 4.5x more microstore RAM than cache RAM!

“Iron Law” of Processor Performance

38

§ Instructions per program depends on source code,
compiler technology, and ISA

§ Cycles per instructions (CPI) depends on ISA and
µarchitecture

§ Time per cycle depends upon the µarchitecture and base
technology

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

Inst 3

CPI for Microcoded Machine

39

7 cycles

Inst 1 Inst 2

5 cycles 10 cycles

Total clock cycles = 7+5+10 = 22
Total instructions = 3
CPI = 22/3 = 7.33
CPI is always an average over a large
number of instructions.

Time

IC Technology Changes Tradeoffs

40

§ Logic, RAM, ROM all implemented using MOS transistors
§ Semiconductor RAM ~ same speed as ROM

Reconsidering Microcode Machine
(Nanocoded 68000 example)

41

§ Motorola 68000 had 17-bit µcode containing either 10-bit µjump
or 9-bit nanoinstruction pointer

– Nanoinstructions were 68 bits wide, decoded to give 196
control signals

µcode ROM

nanoaddress

µcode
next-state

µaddress

µPC (state)

nanoinstruction ROM
data

Exploits recurring control
signal patterns in µcode,
e.g.,

ALU0 A ← Reg[rs1]
...
ALUI0 A ← Reg[rs1]
...

User PC

Inst. Cache

Hardwired Decode

RISC!

From CISC to RISC

§ Use fast RAM to build fast instruction cache of user-visible
instructions, not fixed hardware microroutines

– Contents of fast instruction memory change to fit application needs

§ Use simple ISA to enable hardwired pipelined
implementation

– Most compiled code only used few CISC instructions

– Simpler encoding allowed pipelined implementations

§ Further benefit with integration
– In early ‘80s, finally fit 32-bit datapath + small caches on single chip

– No chip crossings in common case allows faster operation

42

Berkeley RISC Chips

43

RISC-I (1982) Contains 44,420
transistors, fabbed in 5 µm NMOS,
with a die area of 77 mm2, ran at
1 MHz. This chip is probably the
first VLSI RISC.

RISC-II (1983) contains 40,760
transistors, was fabbed in 3
µm NMOS, ran at 3 MHz, and
the size is 60 mm2.

Stanford built some too…

Microprogramming is far from extinct

§ Played a crucial role in micros of the Eighties
• DEC uVAX, Motorola 68K series, Intel 286/386

§ Plays an assisting role in most modern micros
– e.g., AMD Zen, Intel Sky Lake, Intel Atom, IBM PowerPC, …

– Most instructions executed directly, i.e., with hard-wired control

– Infrequently-used and/or complicated instructions invoke microcode

§ Patchable microcode common for post-fabrication bug
fixes, e.g. Intel processors load µcode patches at bootup

– Intel had to scramble to resurrect microcode tools and find original
microcode engineers to patch Meltdown/Spectre security vulnerabilites

44

Acknowledgements

§ These slides contain material developed and copyright by:
– Arvind (MIT)
– Krste Asanovic (MIT/UCB)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)

§ MIT material derived from course 6.823
§ UCB material derived from course CS252

45

