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Last time in Lecture 6

§ 3 C’s of cache misses
– Compulsory, Capacity, Conflict

§ Write policies
– Write back, write-through, write-allocate, no write allocate

§ Pipelining write hits
§ Multi-level cache hierarchies reduce miss penalty

– 3 levels common in modern systems (some have 4!)
– Can change design tradeoffs of L1 cache if known to have L2
– Inclusive versus exclusive cache hierarchies
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Recap: Multilevel Caches
Problem: A memory cannot be large and fast
Solution: Increasing sizes of cache at each level
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CPU L1$ L2$ DRAM

Local miss rate = misses in cache / accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions



Itanium-2 On-Chip Caches
(Intel/HP, 2002)
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Level 1: 16KB, 4-way s.a., 64B 
line,  quad-port (2 load+2 
store), single cycle latency

Level 2: 256KB, 4-way s.a, 128B 
line, quad-port (4 load or 4 
store), five cycle latency

Level 3: 3MB, 12-way s.a., 128B 
line, single 32B port, twelve 
cycle latency



Power 7 On-Chip Caches [IBM 2009]
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32KB L1 I$/core

32KB L1 D$/core

3-cycle latency

256KB Unified L2$/core

8-cycle latency

32MB Unified Shared L3$

Embedded DRAM (eDRAM)

25-cycle latency to local 
slice



IBM z196 Mainframe Caches 2010
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§96 cores (4 cores/chip, 24 chips/system)
– Out-of-order, 3-way superscalar @ 5.2GHz

§L1: 64KB I-$/core + 128KB D-$/core
§L2: 1.5MB private/core (144MB total)
§L3: 24MB shared/chip (eDRAM) (576MB total)
§L4: 768MB shared/system (eDRAM)
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Exponential X704 PowerPC Processor
(1997)
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2KB L1 Direct-Mapped 
Instruction Cache

2KB L1 Direct-Mapped 
Write-Through Data 
Cache

32KB L2 8-way 
Set-Associative 
Write-Back 
Unified Cache

0.5µm BiCMOS

Ran at 410-533MHz 
when other PC 
processors were 
much lower clock 
rate

Project delayed –
missed market 
window for Apple



Victim Caches (HP 7200)

L1 Data 
Cache

Unified L2 
Cache

RF

CPU

Victim

FA Cache

4 blocks

Evicted data

from L1

Evicted data
from VC

to where?
Hit data from VC 
(miss in L1)

Victim cache is a small associative backup cache, added to a direct-mapped 
cache, which holds recently evicted lines
• First look up in direct-mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1
• If miss in victim cache, L1 victim -> VC, VC victim->?
Fast hit time of direct mapped but with reduced conflict misses 8
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MIPS R10000 Off-Chip L2 Cache
(Yeager, IEEE Micro 1996)
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Way-Predicting Caches
(MIPS R10000 L2 cache)
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• Use processor address to index into way-prediction table
• Look in predicted way at given index, then:

HIT MIS
S

Return 
copy
of data from
cache

Look in other way

Read block of data 
from
next level of cache

MIS
SSLOW HIT

(change entry in 
prediction table)
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R10000 L2 Cache Timing Diagram
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Way-Predicting Instruction Cache 
(Alpha 21264-like)
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PC addr inst

Primary
Instruction
Cache

0x4
Add

Sequential Way

Branch Target Way

way

Jump target

Jump 
control

Store last-used way for sequential 
path and predicted branch taken 
path.  Can be fetching multiple 
instructions per cycle.



CS152 Administrivia

§ PS 2 out today, due Wednesday Feb 27
§ Monday Feb 18 is President’s Day Holiday, no class!
§ Lab 1 due at start of class on Wednesday Feb 20
§ Friday’s sections will review PS 1 and solutions
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CS252 Administrivia

§ Start thinking of class projects and forming teams of two
§ Proposal due Wednesday February 27th
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Reduce Miss Penalty of Long Blocks:
Early Restart and Critical Word First
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§ Don’t wait for full block before restarting CPU
§ Early restart—As soon as the requested word of the block 

arrives, send it to the CPU and let the CPU continue execution
§ Critical Word First—Request the missed word first from memory 

and send it to the CPU as soon as it arrives; let the CPU continue 
execution while filling the rest of the words in the block

– Long blocks more popular today Þ Critical Word 1st Widely used 

Word 0

Word 1

Word 2

Word 3

To CPU

Word 2

Word 3

Word 0

Word 1

To CPU

Rest of line filled in 
with wrap-around on 
cache line
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Increasing Cache Bandwidth with
Non-Blocking Caches

§ Non-blocking cache or  lockup-free cache allow data cache to 
continue to supply cache hits during a miss

– requires Full/Empty bits on registers or out-of-order execution
§ “hit under miss”  reduces the effective miss penalty by working 

during miss vs. ignoring CPU requests
§ “hit under multiple miss” or “miss under miss”  may further 

lower the effective miss penalty by overlapping multiple misses
– Significantly increases the complexity of the cache controller as there can be 

multiple outstanding memory accesses, and can get miss to line with 
outstanding miss (secondary miss)

– Requires pipelined or banked memory system (otherwise cannot support 
multiple misses)

– Pentium Pro allows 4 outstanding memory misses
– Cray X1E vector supercomputer allows 2,048 outstanding memory misses
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Value of Hit Under Miss for SPEC 
(old data)

§ FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
§ Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
§ 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss, SPEC 92

Integer

Floating Point

“Hit under n Misses”

0->1
1->2
2->64
Base



Prefetching

§ Speculate on future instruction and data accesses 
and fetch them into cache(s)

– Instruction accesses easier to predict than data accesses

§ Varieties of prefetching
– Hardware prefetching
– Software prefetching
– Mixed schemes

§ What types of misses does prefetching affect?
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Issues in Prefetching

§ Usefulness – should produce hits
§ Timeliness – not late and not too early
§ Cache and bandwidth pollution
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L1 Data

L1 Instruction

Unified L2 
Cache

RF

CPU

Prefetched data



Hardware Instruction Prefetching

Instruction prefetch in Alpha AXP 21064
– Fetch two lines on a miss; the requested line (i) and the next 

consecutive line (i+1)
– Requested line placed in cache, and next line in instruction stream 

buffer
– If miss in cache but hit in stream buffer, move stream buffer line 

into cache and prefetch next line (i+2)
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L1 
Instruction

Unified L2 
Cache

RF

CPU

Stream
Buffer

Prefetched
instruction lineReq

line

Req
line



Hardware Data Prefetching

§ Prefetch-on-miss:

– Prefetch b + 1 upon miss on b

§ One-Block Lookahead (OBL) scheme 

– Initiate prefetch for block b + 1 when block b is accessed

– Why is this different from doubling block size?

– Can extend to N-block lookahead

§ Strided prefetch

– If observe sequence of accesses to line b, b+N, b+2N, then prefetch b+3N 

etc.

§ Example: IBM Power 5 [2003] supports eight independent 

streams of strided prefetch per processor, prefetching 12 

lines ahead of current access

21



Software Prefetching
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for(i=0; i < N; i++) {
prefetch( &a[i + 1] );
prefetch( &b[i + 1] );
SUM = SUM + a[i] * b[i];

}



Software Prefetching Issues
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§ Timing is the biggest issue, not predictability
– If you prefetch very close to when the data is required, you might 

be too late
– Prefetch too early, cause pollution
– Estimate how long it will take for the data to come into L1, so we 

can set P appropriately
– Why is this hard to do?

for(i=0; i < N; i++) {
prefetch( &a[i + P] );
prefetch( &b[i + P] );
SUM = SUM + a[i] * b[i];

}
Must consider cost of prefetch instructions



Software Prefetching Example
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[“Data prefetching on the HP PA8000”, Santhanam et al., 1997]



Compiler Optimizations

§ Restructuring code affects the data access sequence 
– Group data accesses together to improve spatial locality
– Re-order data accesses to improve temporal locality

§ Prevent data from entering the cache
– Useful for variables that will only be accessed once before being 

replaced
– Needs mechanism for software to tell hardware not to cache data (“no-

allocate” instruction hints or page table bits)

§ Kill data that will never be used again
– Streaming data exploits spatial locality but not temporal locality
– Replace into dead cache locations
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Loop Interchange
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for(j=0; j < N; j++) {
for(i=0; i < M; i++) {

x[i][j] = 2 * x[i][j];
}

}

for(i=0; i < M; i++) {
for(j=0; j < N; j++) {

x[i][j] = 2 * x[i][j];
}

}

What type of locality does this improve?



Loop Fusion
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for(i=0; i < N; i++)
a[i] = b[i] * c[i];

for(i=0; i < N; i++)
d[i] = a[i] * c[i];

for(i=0; i < N; i++)
{

a[i] = b[i] * c[i]; 
d[i] = a[i] * c[i];

}

What type of locality does this improve?



Matrix Multiply, Naïve Code
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for(i=0; i < N; i++)
for(j=0; j < N; j++) {

r = 0;
for(k=0; k < N; k++)  
r = r + y[i][k] * z[k][j];

x[i][j] = r;
}

Not touched Old access New access

x j

i

y k

i

z j

k



Matrix Multiply with Cache Tiling
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for(jj=0; jj < N; jj=jj+B)
for(kk=0; kk < N; kk=kk+B)

for(i=0; i < N; i++)
for(j=jj; j < min(jj+B,N); j++) {

r = 0;
for(k=kk; k < min(kk+B,N); k++) 

r = r + y[i][k] * z[k][j];
x[i][j] = x[i][j] + r;

}

What type of locality does this improve?

y k

i

z j

k

x j

i
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