CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 7 — Memory lll

Krste Asanovic
Electrical Engineering and Computer Sciences
University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

Last time in Lecture 6

" 3 C’s of cache misses
— Compulsory, Capacity, Conflict
= Write policies
— Write back, write-through, write-allocate, no write allocate
= Pipelining write hits
= Multi-level cache hierarchies reduce miss penalty

— 3 levels common in modern systems (some have 4!)
— Can change design tradeoffs of L1 cache if known to have L2
— Inclusive versus exclusive cache hierarchies

Recap: Multilevel Caches

Problem: A memory cannot be large and fast
Solution: Increasing sizes of cache at each level

CPU |—IL1$}—{ 12¢ — DRAM

Local miss rate = misses in cache / accesses to cache
Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions

Itanium-2 On-Chip Caches
(Intel/HP, 2002)

== W= e [T *‘__.';_]IJ“ &
] éraﬂ?lf‘ tnit | Floatirlg Po

21.6 mm

m

Level 1: 16KB, 4-way s.a., 64B
line, quad-port (2 load+2
store), single cycle latency

Ttk

Level 2: 256KB, 4-way s.a, 128B
line, quad-port (4 load or 4
store), five cycle latency

Level 3: 3MB, 12-way s.a., 128B
line, single 32B port, twelve
cycle latency

O 5 S '
19.5mm >

Power 7 On-Chip Caches [IBM 2009]

32KB L1 IS/core
32KB L1 DS/core

3-cycle latency

256KB Unified L2S/core

8-cycle latency

32MB Unified Shared L3S
Embedded DRAM (eDRAM)

25-cycle latency to local
slice

IBM 2196 Mainframe Caches 2010

" 96 cores (4 cores/chip, 24 chips/system)
— Out-of-order, 3-way superscalar @ 5.2GHz

= |1: 64KB I-S/core + 128KB D-S/core

= 2: 1.5MB private/core (144MB total)

x| 3: 24MB shared/chip (eDRAM) (576 MB total)
" 4: 768 MB shared/system (eDRAM)

Exponential X704 PowerPC Processor
(1997)

32KB L2 8-way
Set-Associative
Write-Back
Unified Cache

0.5um BiCMOS

Ran at 410-533MHz
when other PC
processors were
much lower clock
rate

2KB L1 Direct-Mapped 2KB L1 Direct-Mapped
Instruction Cache Write-Through Data
Cache

CS252 7

Project delayed —
missed market
window for Apple

Victim Caches (HP 7200)

Unified L2

Cache

CPU
{1l p
RE |I : L1 Data
Cache
A

A 4

Victim

FA Cache

4 blocks

, to where?

Victim cache is a small associative backup cache, added to a direct-mapped

cache, which holds recently evicted lines
e First look up in direct-mapped cache
e |[f miss, look in victim cache

e If hit in victim cache, swap hit line with line now evicted from L1

e |[f miss in victim cache, L1 victim -> VC, VC victim->?

Fast hit time of direct mapped but with reduced conflict misses

MIPS R10000 Off-Chip L2 Cache
(Yeager, IEEE Micro 1996)

Secondary cache Secondary cache
(512K to 16-Mbyte (512K to 16-Mbyte
synchronous SRAM) synchronous SRAM)
2x19-bit 128-bit data + 9-bit ECC
address 26-bit tag + 7-bit ECC
R10000 R10000
(32-Kbyte instr cache (32-Kbyte instr cache
32-Kbyte data cache) 32-Kbyte data cache)
A A
- —-
64-bit address/data Cluster bus
8-bit ECC System interface bus
12-bit command v v
Duplicate tags External Rest of
Directory -~ agent ward

Figure 1. System configuration. The cluster bus directly
CS5252 connects as many as four chips.

CS252

Way-Predicting Caches
(MIPS R10000 L2 cache)

Use processor address to index into way-prediction table

Look in predicted way at given index, then:

HIT

Return
copy

of data fkom
cache

MIS

Look in other way

SLOW HIT
(change entry in
prediction table)

MIS
S

Read block of data
from
next level of cache

10

R10000 L2 Cache Timing Diagram

I I I ! I I I I
8,192-bit MRU selects which way is read from the
secondary cache first; this way is more likely to be needed
| | |

MRU table MRU P Othéf operations may be lqter/eaved

Primary cache Miss

N\ Cache RAMs include pipeline registers on address and data

- SRAM index (output pins) ' Addr ! Addr B e
Each transfer takes a full cycle \\ \
: ,
| | \ !
SRAM read (secondary cache) RAM | RAM ; & :
: ! TN \) o o
: g \(D Use if Hit A g X s@ 1. Read only if Hit B
: . ' \ 1. { i i :
128-bit data (bidirectional pins) | A0 Al MBI ;:
Address tag (bidirectional pins) |. A z=1f N B | .
i \ i - . | Other way is read with second data quad word
| ' . |
Secondary cache tag check A aESET
Compare tag address and state MRU | Other
| I | way | way

@ Refill secondary cache from memory if both ways miss

— e

Figure 12. Refill from the set-associative secondary cache. In this example, the secondary clock equals the processor’s
internal pipeline clock. It may be slower.

CS252 11

Way-Predicting Instruction Cache
(Alpha 21264-like)

Jump target Store last-used way for sequential

path and predicted branch taken
Ox4 a path. Can be fetching multiple
> :

Jump
control

instructions per cycle.

—p PC addr

A .
Primary
»| wa Instruction
->| j 4 Cache

Sequential Way

inst >

Branch Target Way

CS252 12

CS152 Administrivia

= PS 2 out today, due Wednesday Feb 27

" Monday Feb 18 is President’s Day Holiday, no class!
" Lab 1 due at start of class on Wednesday Feb 20

" Friday’s sections will review PS 1 and solutions

13

CS252 Administrivia

= Start thinking of class projects and forming teams of two
" Proposal due Wednesday February 27th

CS252

14

Reduce Miss Penalty of Long Blocks:
Early Restart and Critical Word First

" Don’t wait for full block before restarting CPU

= Farly restart—As soon as the requested word of the block
arrives, send it to the CPU and let the CPU continue execution

= Critical Word First—Request the missed word first from memory
and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block

— Long blocks more popular today = Critical Word 1t Widely used

/\

To CPU

Word 0
Word 1

Word 3

/\

To CPU

Word 3
Word 0
Word 1

Rest of line filled in
with wrap-around on
cache line

15

Increasing Cache Bandwidth with
Non-Blocking Caches

= Non-blocking cache or lockup-free cache allow data cache to
continue to supply cache hits during a miss

— requires Full/Empty bits on registers or out-of-order execution

= “hit under miss” reduces the effective miss penalty by working
during miss vs. ignoring CPU requests

= “hit under multiple miss” or “miss under miss” may further
lower the effective miss penalty by overlapping multiple misses

— Significantly increases the complexity of the cache controller as there can be
multiple outstanding memory accesses, and can get miss to line with
outstanding miss (secondary miss)

— Requires pipelined or banked memory system (otherwise cannot support
multiple misses)

— Pentium Pro allows 4 outstanding memory misses
— Cray X1E vector supercomputer allows 2,048 outstanding memory misses

CS252

16

CS252

—_—
o ™

—
(=3

ccess Time

o o Aﬁgg. 1gatm. A.

1.4 -

—_—
™~

o N BB o

Value of Hit Under Miss for SPEC

" "(61d"data)

“Hit under n Misses”

/
Floating Point /

e
=)
o~
=
L.
&

ora

0->1

| RY

= FP programs on average: AMAT=0.68 ->0.52 ->0.34 -> 0.26
= |nt programs on average: AMAT=0.24 ->0.20->0.19->0.19

= 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss, SPEC 92

0->1
1->2
2->64
Base

17

Prefetching

= Speculate on future instruction and data accesses
and fetch them into cache(s)

— Instruction accesses easier to predict than data accesses

= Varieties of prefetching

— Hardware prefetching
— Software prefetching
— Mixed schemes

»" What types of misses does prefetching affect?

18

= Usefulness — should produce hits

Issues in Prefetching

" Timeliness — not late and not too early

» Cache and bandwidth pollution

CPU
11l

RF

[| 1 |nstruction

o — L1 Data I

Unified L2
Cache

Prefetched data

19

Hardware Instruction Prefetching

Instruction prefetch in Alpha AXP 21064

— Fetch two lines on a miss; the requested line (i) and the next
consecutive line (i+1)

— Requested line placed in cache, and next line in instruction stream
buffer

— If miss in cache but hit in stream buffer, move stream buffer line
into cache and prefetch next line (i+2)

Prefetched
instruction line

Req

) Stream
line

Buffer

CPU

L1 4—-—| Unified L2
RF Instruction | Reg Cache
line

20

Hardware Data Prefetching

= Prefetch-on-miss:
— Prefetch b + 1 upon misson b

=" One-Block Lookahead (OBL) scheme
— Initiate prefetch for block b + 1 when block b is accessed
— Why is this different from doubling block size?
— Can extend to N-block lookahead

= Strided prefetch

— If observe sequence of accesses to line b, b+N, b+2N, then prefetch b+3N
etc.

= Example: IBM Power 5 [2003] supports eight independent
streams of strided prefetch per processor, prefetching 12
lines ahead of current access

21

Software Prefetching

for(i=0; 1 < N; i++) {
prefetch(&af[i + 1])
prefetch(&b[i + 1])
SUM = SUM + a[i] * b[1i];

22

Software Prefetching Issues

" Timing is the biggest issue, not predictability

— If you prefetch very close to when the data is required, you might
be too late

— Prefetch too early, cause pollution

— Estimate how long it will take for the data to come into L1, so we
can set P appropriately

— Why is this hard to do?

for(i=0; 1 < N; i++) {
prefetch(&a[i + P]);
prefetch(&b[i + P]);
SUM = SUM + a[i] * b[1i];

Must consider cost of prefetch instructions

23

Speedup Ratio

Software Prefetching Example

[“Data prefetching on the HP PA8000”, Santhanam et al., 1997]

80%

75%

70%

65% }

60% f

55% ¢

50%

i L

do i =1, n

enddo

Ll

subroutine example(X,Y,Z,B,n)
real *4 X(1), Y(1), Z2(1), B

X(1i) = Y(i) + B*2(1)

+

With cache | With cache
capacity misses hits
With prefetch instruction 70% -13%
minimization
Without prefetch instruction 70% -55%
minimization

Table 1: Speedup with/without Prefetch Minimization

L. L 1 L 2.

3 4 5 6 7
Cache Lines

Figure 2: Speedup Ratio for Different Prefetch Distances

24

Compiler Optimizations

= Restructuring code affects the data access sequence
— Group data accesses together to improve spatial locality
— Re-order data accesses to improve temporal locality

" Prevent data from entering the cache

— Useful for variables that will only be accessed once before being
replaced

— Needs mechanism for software to tell hardware not to cache data (“no-
allocate” instruction hints or page table bits)

= Kill data that will never be used again
— Streaming data exploits spatial locality but not temporal locality

— Replace into dead cache locations

25

Loop Interchange

for(j=0; j < N; j++) {
for(i=0; i < M; i++) {
\ x[1][3] = 2 * x[1][3]]~

.

for(i=0; i < M; i++) {
for(jJ=0; jJ < N; Jj++) {
\ x[1]1[3] = 2 * x[1i]1[]];

}

}

What type of locality does this improve?

26

Loop Fusion

for (i=0; i < N; i++)
a[i] = b[i] * c[i];

for (i=0; i < N; i++)

d[i] = a[1i] * c[i];

for (i=0; i < N; i++)

{

b[i] * c[i];
af[i] * c[i]-

afi]
d[i]

}

What type of locality does this improve?

27

Matrix Multiply, Naive Code

for(i=0; 1 < N; i++)
for(3j=0; j < N; Jj++) {
r =0;
for(k=0; k < N; k++)

r =r + yl[i]l[k] * z[k][]]’

\ x[1][3] = r;

k

Not touched Old access

I New access

28

Matrix Multiply with Cache Tiling

for(jj=0; jj < N; jj=jj+B)
for (kk=0; kk < N; kk=kk+B)
for (i=0; i < N; i++)

for(j=jj; j < min(jj+B,N); j++) {

r =0;

for (k=kk; k < min (kk+B,N) ; k++;<

r =r + y[i][k] * z[k]lI[3]]:;
x[1][3] = =[1][]J] + x;

Y k X

What type of locality does this improve?

29

Acknowledgements

" This course is partly inspired by previous MIT 6.823 and
Berkeley CS252 computer architecture courses created by
my collaborators and colleagues:

— Arvind (MIT)

— Joel Emer (Intel/MIT)

— James Hoe (CMU)

— John Kubiatowicz (UCB)
— David Patterson (UCB)

30

