
CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 7 – Memory III

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

Last time in Lecture 6

§ 3 C’s of cache misses
– Compulsory, Capacity, Conflict

§ Write policies
– Write back, write-through, write-allocate, no write allocate

§ Pipelining write hits
§ Multi-level cache hierarchies reduce miss penalty

– 3 levels common in modern systems (some have 4!)
– Can change design tradeoffs of L1 cache if known to have L2
– Inclusive versus exclusive cache hierarchies

2

Recap: Multilevel Caches
Problem: A memory cannot be large and fast
Solution: Increasing sizes of cache at each level

3

CPU L1$ L2$ DRAM

Local miss rate = misses in cache / accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions

Itanium-2 On-Chip Caches
(Intel/HP, 2002)

4

Level 1: 16KB, 4-way s.a., 64B
line, quad-port (2 load+2
store), single cycle latency

Level 2: 256KB, 4-way s.a, 128B
line, quad-port (4 load or 4
store), five cycle latency

Level 3: 3MB, 12-way s.a., 128B
line, single 32B port, twelve
cycle latency

Power 7 On-Chip Caches [IBM 2009]

5

32KB L1 I$/core

32KB L1 D$/core

3-cycle latency

256KB Unified L2$/core

8-cycle latency

32MB Unified Shared L3$

Embedded DRAM (eDRAM)

25-cycle latency to local
slice

IBM z196 Mainframe Caches 2010

6

§96 cores (4 cores/chip, 24 chips/system)
– Out-of-order, 3-way superscalar @ 5.2GHz

§L1: 64KB I-$/core + 128KB D-$/core
§L2: 1.5MB private/core (144MB total)
§L3: 24MB shared/chip (eDRAM) (576MB total)
§L4: 768MB shared/system (eDRAM)

CS252

Exponential X704 PowerPC Processor
(1997)

7

2KB L1 Direct-Mapped
Instruction Cache

2KB L1 Direct-Mapped
Write-Through Data
Cache

32KB L2 8-way
Set-Associative
Write-Back
Unified Cache

0.5µm BiCMOS

Ran at 410-533MHz
when other PC
processors were
much lower clock
rate

Project delayed –
missed market
window for Apple

Victim Caches (HP 7200)

L1 Data
Cache

Unified L2
Cache

RF

CPU

Victim

FA Cache

4 blocks

Evicted data

from L1

Evicted data
from VC

to where?
Hit data from VC
(miss in L1)

Victim cache is a small associative backup cache, added to a direct-mapped
cache, which holds recently evicted lines
• First look up in direct-mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1
• If miss in victim cache, L1 victim -> VC, VC victim->?
Fast hit time of direct mapped but with reduced conflict misses 8

CS252

MIPS R10000 Off-Chip L2 Cache
(Yeager, IEEE Micro 1996)

9

CS252

Way-Predicting Caches
(MIPS R10000 L2 cache)

10

• Use processor address to index into way-prediction table
• Look in predicted way at given index, then:

HIT MIS
S

Return
copy
of data from
cache

Look in other way

Read block of data
from
next level of cache

MIS
SSLOW HIT

(change entry in
prediction table)

CS252

R10000 L2 Cache Timing Diagram

11

CS252

Way-Predicting Instruction Cache
(Alpha 21264-like)

12

PC addr inst

Primary
Instruction
Cache

0x4
Add

Sequential Way

Branch Target Way

way

Jump target

Jump
control

Store last-used way for sequential
path and predicted branch taken
path. Can be fetching multiple
instructions per cycle.

CS152 Administrivia

§ PS 2 out today, due Wednesday Feb 27
§ Monday Feb 18 is President’s Day Holiday, no class!
§ Lab 1 due at start of class on Wednesday Feb 20
§ Friday’s sections will review PS 1 and solutions

13

CS252

CS252 Administrivia

§ Start thinking of class projects and forming teams of two
§ Proposal due Wednesday February 27th

14

Reduce Miss Penalty of Long Blocks:
Early Restart and Critical Word First

15

§ Don’t wait for full block before restarting CPU
§ Early restart—As soon as the requested word of the block

arrives, send it to the CPU and let the CPU continue execution
§ Critical Word First—Request the missed word first from memory

and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block

– Long blocks more popular today Þ Critical Word 1st Widely used

Word 0

Word 1

Word 2

Word 3

To CPU

Word 2

Word 3

Word 0

Word 1

To CPU

Rest of line filled in
with wrap-around on
cache line

CS252 16

Increasing Cache Bandwidth with
Non-Blocking Caches

§ Non-blocking cache or lockup-free cache allow data cache to
continue to supply cache hits during a miss

– requires Full/Empty bits on registers or out-of-order execution
§ “hit under miss” reduces the effective miss penalty by working

during miss vs. ignoring CPU requests
§ “hit under multiple miss” or “miss under miss” may further

lower the effective miss penalty by overlapping multiple misses
– Significantly increases the complexity of the cache controller as there can be

multiple outstanding memory accesses, and can get miss to line with
outstanding miss (secondary miss)

– Requires pipelined or banked memory system (otherwise cannot support
multiple misses)

– Pentium Pro allows 4 outstanding memory misses
– Cray X1E vector supercomputer allows 2,048 outstanding memory misses

CS252 17

Value of Hit Under Miss for SPEC
(old data)

§ FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
§ Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
§ 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss, SPEC 92

Integer

Floating Point

“Hit under n Misses”

0->1
1->2
2->64
Base

Prefetching

§ Speculate on future instruction and data accesses
and fetch them into cache(s)

– Instruction accesses easier to predict than data accesses

§ Varieties of prefetching
– Hardware prefetching
– Software prefetching
– Mixed schemes

§ What types of misses does prefetching affect?

18

Issues in Prefetching

§ Usefulness – should produce hits
§ Timeliness – not late and not too early
§ Cache and bandwidth pollution

19

L1 Data

L1 Instruction

Unified L2
Cache

RF

CPU

Prefetched data

Hardware Instruction Prefetching

Instruction prefetch in Alpha AXP 21064
– Fetch two lines on a miss; the requested line (i) and the next

consecutive line (i+1)
– Requested line placed in cache, and next line in instruction stream

buffer
– If miss in cache but hit in stream buffer, move stream buffer line

into cache and prefetch next line (i+2)

20

L1
Instruction

Unified L2
Cache

RF

CPU

Stream
Buffer

Prefetched
instruction lineReq

line

Req
line

Hardware Data Prefetching

§ Prefetch-on-miss:

– Prefetch b + 1 upon miss on b

§ One-Block Lookahead (OBL) scheme

– Initiate prefetch for block b + 1 when block b is accessed

– Why is this different from doubling block size?

– Can extend to N-block lookahead

§ Strided prefetch

– If observe sequence of accesses to line b, b+N, b+2N, then prefetch b+3N

etc.

§ Example: IBM Power 5 [2003] supports eight independent

streams of strided prefetch per processor, prefetching 12

lines ahead of current access

21

Software Prefetching

22

for(i=0; i < N; i++) {
prefetch(&a[i + 1]);
prefetch(&b[i + 1]);
SUM = SUM + a[i] * b[i];

}

Software Prefetching Issues

23

§ Timing is the biggest issue, not predictability
– If you prefetch very close to when the data is required, you might

be too late
– Prefetch too early, cause pollution
– Estimate how long it will take for the data to come into L1, so we

can set P appropriately
– Why is this hard to do?

for(i=0; i < N; i++) {
prefetch(&a[i + P]);
prefetch(&b[i + P]);
SUM = SUM + a[i] * b[i];

}
Must consider cost of prefetch instructions

Software Prefetching Example

24

[“Data prefetching on the HP PA8000”, Santhanam et al., 1997]

Compiler Optimizations

§ Restructuring code affects the data access sequence
– Group data accesses together to improve spatial locality
– Re-order data accesses to improve temporal locality

§ Prevent data from entering the cache
– Useful for variables that will only be accessed once before being

replaced
– Needs mechanism for software to tell hardware not to cache data (“no-

allocate” instruction hints or page table bits)

§ Kill data that will never be used again
– Streaming data exploits spatial locality but not temporal locality
– Replace into dead cache locations

25

Loop Interchange

26

for(j=0; j < N; j++) {
for(i=0; i < M; i++) {

x[i][j] = 2 * x[i][j];
}

}

for(i=0; i < M; i++) {
for(j=0; j < N; j++) {

x[i][j] = 2 * x[i][j];
}

}

What type of locality does this improve?

Loop Fusion

27

for(i=0; i < N; i++)
a[i] = b[i] * c[i];

for(i=0; i < N; i++)
d[i] = a[i] * c[i];

for(i=0; i < N; i++)
{

a[i] = b[i] * c[i];
d[i] = a[i] * c[i];

}

What type of locality does this improve?

Matrix Multiply, Naïve Code

28

for(i=0; i < N; i++)
for(j=0; j < N; j++) {

r = 0;
for(k=0; k < N; k++)
r = r + y[i][k] * z[k][j];

x[i][j] = r;
}

Not touched Old access New access

x j

i

y k

i

z j

k

Matrix Multiply with Cache Tiling

29

for(jj=0; jj < N; jj=jj+B)
for(kk=0; kk < N; kk=kk+B)

for(i=0; i < N; i++)
for(j=jj; j < min(jj+B,N); j++) {

r = 0;
for(k=kk; k < min(kk+B,N); k++)

r = r + y[i][k] * z[k][j];
x[i][j] = x[i][j] + r;

}

What type of locality does this improve?

y k

i

z j

k

x j

i

Acknowledgements

§ This course is partly inspired by previous MIT 6.823 and
Berkeley CS252 computer architecture courses created by
my collaborators and colleagues:

– Arvind (MIT)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)

30

