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Last time in Lecture 8

§ Protection and translation required for multiprogramming
– Base and bounds was early simple scheme

§ Page-based translation and protection avoids need for 
memory compaction, easy allocation by OS

– But need to indirect in large page table on every access

§ Address spaces accessed sparsely
– Can use multi-level page table to hold translation/protection 

information, but implies multiple memory accesses per reference

§ Address space access with locality
– Can use “translation lookaside buffer” (TLB) to cache address 

translations (sometimes known as address translation cache)
– Still have to walk page tables on TLB miss, can be hardware or software 

talk

§ Virtual memory uses DRAM as a “cache” of disk memory, 
allows very cheap main memory
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Modern Virtual Memory Systems
Illusion of a large, private, uniform store
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Protection & Privacy
several users, each with their private address 
space and one or more shared address spaces

page table � name space

Demand Paging
Provides the ability to run programs larger 
than the primary memory

Hides differences in machine configurations

The price is address translation on 
each memory reference
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Recap: Hierarchical Page Table
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Recap: Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)
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§ Assumes page tables held in untranslated physical memory

PC
Inst. 
TLB

Inst. 
Cache D Decode E M

Data 
Cache W+

Page Fault?

Protection violation?
Page Fault?

Protection violation?

Data 
TLB

Main Memory (DRAM)

Memory Controller
Physical 
Address

Physical 
Address

Physical Address

Physical 
Address

Page-Table Base 
Register

Virtual 
Address Physical 

Address

Virtual 
Address

Hardware Page 
Table Walker

Miss? Miss?



Address Translation:
putting it all together
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Page Fault Handler

§ When the referenced page is not in DRAM:
– The missing page is located (or created)

– It is brought in from disk, and page table is updated

• Another job may be run on the CPU while the first job waits 
for the requested page to be read from disk

– If no free pages are left, a page is swapped out

• Pseudo-LRU replacement policy, implemented in software

§ Since it takes a long time to transfer a page 
(msecs), page faults are handled completely in 
software by the OS

– Untranslated addressing mode is essential to allow kernel to 
access page tables
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Handling VM-related exceptions

§ Handling a TLB miss needs a hardware or software 
mechanism to refill TLB 

§ Handling page fault (e.g., page is on disk) needs 
restartable exception so software handler can resume 
after retrieving page

– Precise exceptions are easy to restart
– Can be imprecise but restartable, but this complicates OS software

§ A protection violation may abort process
– But often handled the same as a page fault
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Address Translation in CPU Pipeline

§ Need to cope with additional latency of TLB:
– slow down the clock?
– pipeline the TLB and cache access?
– virtual address caches
– parallel TLB/cache access
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Virtual-Address Caches
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§ one-step process in case of a hit (+)
§ cache needs to be flushed on a context switch unless address space 

identifiers (ASIDs) included in tags (-)
§ aliasing problems due to the sharing of pages (-)
§ maintaining cache coherence (-) 
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Virtually Addressed Cache
(Virtual Index/Virtual Tag)
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Aliasing in Virtual-Address Caches
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VA1

VA2

Page Table

Data Pages

PA

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Two virtual pages share 
one physical page

Virtual cache can have two copies of 
same physical data. Writes to one 
copy not visible to reads of other!

General Solution: Prevent aliases coexisting in cache

Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this ensures 
all VAs accessing same PA will conflict in direct-mapped cache 
(early SPARCs)



Concurrent Access to TLB & Cache
(Virtual Index/Physical Tag)
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Index L is available without consulting the TLB
→ cache and TLB accesses can begin simultaneously!

Tag comparison is made after both accesses are completed
Cases: L + b = k,  L + b < k,  L + b > k
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Virtual-Index Physical-Tag Caches: 
Associative Organization
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How does this scheme scale to larger caches?
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CS152 Administrivia

§ PS 2 due Wednesday Feb 27
§ Midterm in class Monday March 6

– Covers lectures 1 – 9, plus assigned problem sets, labs, book readings

§ Lab 2 due Monday March 11
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CS252

CS252 Administrivia
§ Start thinking of class projects and forming teams of two
§ Proposal due Wednesday February 27th

§ Proposal should be one page PDF including:
– Title

– Team member names

– What are you trying to do?

– How is it done today?

– What is your idea for improvement and why do you think you’ll be 
successful

– What infrastructure are you going to use for your project?

– Project timeline with milestones

§ Mail PDF of proposal to instructors

§ Give a <5-minute presentation in class in discussion 
section time on March 11th

§ No discussion on Mnoday March 4th – midterm!
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Concurrent Access to TLB & Large L1
The problem with L1 > Page size
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Can VA1 and VA2 both map to PA ? 
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A solution via Second-Level Cache
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Usually a common L2 cache backs up both Instruction 
and Data L1 caches

L2 is “inclusive” of both Instruction and Data caches
• Inclusive means L2 has copy of any line in either L1
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Anti-Aliasing Using L2 [MIPS R10000,1996]
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§ Suppose VA1 and VA2 both map to PA and 
VA1 is already in L1, L2 (VA1 ¹ VA2)

§ After VA2 is resolved to PA, a collision will be 
detected in L2.

§ VA1 will be purged from L1 and L2, and VA2 
will be loaded  Þ no aliasing !
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Anti-Aliasing using L2 for a Virtually
Addressed L1
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Atlas Revisited

§ One PAR for each physical page

§ PAR’s contain the VPN’s of the pages 
resident in primary memory

§ Advantage:  The size is proportional 
to the size of the primary memory

§ What is the disadvantage ?
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CS252

Hashed Page Table:
Approximating Associative Addressing
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§ Hashed Page Table is typically 2 to 3 times larger 
than the number of PPN’s to reduce collision 
probability 

§ It can also contain DPN’s for some non-resident 
pages (not common)

§ If a translation cannot be resolved in this table then 
the software consults a data structure that has an 
entry for every existing page (e.g., full page table)
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VPN  PID  DPN
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Power PC: Hashed Page Table

§ Each hash table slot has 8 PTE's <VPN,PPN> that 
are searched sequentially

§ If the first hash slot fails, an alternate hash 
function is used to look in another slot

All these steps are done in hardware!
§ Hashed Table is typically 2 to 3 times larger than 

the number of physical pages

§ The full backup Page Table is managed in software
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RISC-V Privilege Modes

§ Machine mode (M-mode)
-AKA monitor mode, microcode mode, …

§ Hypervisor-Extended Supervisor Mode (HS-
Mode)

§ Supervisor Mode (S-mode)
§ User Mode (U-mode)

§ Supported combinations of modes:
-M (simple embedded systems) 
-M, U (embedded systems with security)
-M, S, U (systems running Unix-like operating systems)
-M, S, HS, U         (systems running hypervisors)



RISC-V System State
§ Processor registers

- Compute registers
- General-purpose (x0-x31)
- Optional floating-point (f0-f31)
- Optional vector (v0-v31)
- Optional custom

- Control and status registers (CSRs)
- Accessibility controlled by privilege mode

§ System main memory
§ System I/O devices
§ All system memory and device control registers mapped into 

flat machine physical address space

25



Physical Memory Protection (PMP)
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M-Mode controls PMPs
§ M-mode has access to entire machine after reset
§ Configures PMPs and ioPMPs to contain each active 

context inside a physical partition
§ Can even restrict M-mode access to regions until next 

reset
§ M-mode can dynamically swap PMP settings to run 

different security contexts on a hart
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RISC-V PMP Configuration
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NAPOT = Naturally Aligned Power-of-2



Multiple Concurrent Security Contexts
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RISC-V Secure Embedded Systems
(M, U modes)

§ M-mode runs secure boot and runtime monitor
§ Embedded code runs in U-mode
§ Physical memory protection (PMP) on U-mode accesses
§ Interrupt handling can be delegated to U-mode code
-User-level interrupt support (N-extension)

§ Provides arbitrary number of isolated security contexts
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RISC-V Virtual Memory Architectures
(M, S, U modes)

§ Designed to support current Unix-style operating 
systems

§ Sv32 (RV32)
- Demand-paged 32-bit virtual-address spaces
- 2-level page table
- 4 KiB pages, 4 MiB megapages

§ Sv39 (RV64)
- Demand-paged 39-bit virtual-address spaces
- 3-level page table
- 4 KiB pages, 2 MiB megapages, 1 GiB gigapages

§ Sv48, Sv57, Sv64 (RV64)
- Sv39 + 1/2/3 more page-table levels

31



S-Mode runs on top of M-mode
§ M-mode runs secure boot and monitor
§ S-mode runs OS 
§ U-mode runs application on top of OS or M-mode
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VM features track historical uses:
§ Bare machine, only physical addresses

– One program owned entire machine
§ Batch-style multiprogramming

– Several programs sharing CPU while waiting for I/O
– Base & bound: translation and protection between programs (supports 
swapping entire programs but not demand-paged virtual memory)

– Problem with external fragmentation (holes in memory), needed 
occasional memory defragmentation as new jobs arrived

§ Time sharing
– More interactive programs, waiting for user.  Also, more jobs/second.
– Motivated move to fixed-size page translation and protection, no 

external fragmentation (but now internal fragmentation, wasted bytes in 
page)

– Motivated adoption of virtual memory to allow more jobs to share 
limited physical memory resources while holding working set in memory

§ Virtual Machine Monitors
– Run multiple operating systems on one machine
– Idea from 1970s IBM mainframes, now common on laptops

• e.g., run Windows on top of Mac OS X
– Hardware support for two levels of translation/protection

• Guest OS virtual -> Guest OS physical -> Host machine physical 33



Virtual Memory Use Today - 1

§ Servers/desktops/laptops/smartphones have full demand-
paged virtual memory

– Portability between machines with different memory sizes
– Protection between multiple users or multiple tasks
– Share small physical memory among active tasks
– Simplifies implementation of some OS features

§ Vector supercomputers have translation and protection 
but rarely complete demand-paging

§ (Older Crays: base&bound, Japanese & Cray X1/X2: pages)
– Don’t waste expensive CPU time thrashing to disk (make jobs fit in 

memory)
– Mostly run in batch mode (run set of jobs that fits in memory)
– Difficult to implement restartable vector instructions
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Virtual Memory Use Today - 2

§Most embedded processors and DSPs 
provide physical addressing only

– Can’t afford area/speed/power budget for virtual 
memory support

– Often there is no secondary storage to swap to!
– Programs custom written for particular memory 

configuration in product
– Difficult to implement restartable instructions for 

exposed architectures
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