
CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 9 – Virtual Memory

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

Last time in Lecture 8

§ Protection and translation required for multiprogramming
– Base and bounds was early simple scheme

§ Page-based translation and protection avoids need for
memory compaction, easy allocation by OS

– But need to indirect in large page table on every access

§ Address spaces accessed sparsely
– Can use multi-level page table to hold translation/protection

information, but implies multiple memory accesses per reference

§ Address space access with locality
– Can use “translation lookaside buffer” (TLB) to cache address

translations (sometimes known as address translation cache)
– Still have to walk page tables on TLB miss, can be hardware or software

talk

§ Virtual memory uses DRAM as a “cache” of disk memory,
allows very cheap main memory

2

Modern Virtual Memory Systems
Illusion of a large, private, uniform store

3

Protection & Privacy
several users, each with their private address
space and one or more shared address spaces

page table � name space

Demand Paging
Provides the ability to run programs larger
than the primary memory

Hides differences in machine configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Secondary
Storage

VA PAmapping
TLB

Recap: Hierarchical Page Table

4

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of Current
Page Table

p1

offset

p2

Virtual Address

(Processor Register)

PTE of a nonexistent page

p1 p2 offset
01112212231

10-bit
L1 index

10-bit
L2 index

Ph
ys

ica
l M

em
or

y

Recap: Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)

5
§ Assumes page tables held in untranslated physical memory

PC
Inst.
TLB

Inst.
Cache D Decode E M

Data
Cache W+

Page Fault?

Protection violation?
Page Fault?

Protection violation?

Data
TLB

Main Memory (DRAM)

Memory Controller
Physical
Address

Physical
Address

Physical Address

Physical
Address

Page-Table Base
Register

Virtual
Address Physical

Address

Virtual
Address

Hardware Page
Table Walker

Miss? Miss?

Address Translation:
putting it all together

6

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

the page is
Ï memory Î memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULTWhere?

Page Fault Handler

§ When the referenced page is not in DRAM:
– The missing page is located (or created)

– It is brought in from disk, and page table is updated

• Another job may be run on the CPU while the first job waits
for the requested page to be read from disk

– If no free pages are left, a page is swapped out

• Pseudo-LRU replacement policy, implemented in software

§ Since it takes a long time to transfer a page
(msecs), page faults are handled completely in
software by the OS

– Untranslated addressing mode is essential to allow kernel to
access page tables

7

Handling VM-related exceptions

§ Handling a TLB miss needs a hardware or software
mechanism to refill TLB

§ Handling page fault (e.g., page is on disk) needs
restartable exception so software handler can resume
after retrieving page

– Precise exceptions are easy to restart
– Can be imprecise but restartable, but this complicates OS software

§ A protection violation may abort process
– But often handled the same as a page fault

8

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

Address Translation in CPU Pipeline

§ Need to cope with additional latency of TLB:
– slow down the clock?
– pipeline the TLB and cache access?
– virtual address caches
– parallel TLB/cache access

9

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

Virtual-Address Caches

10

§ one-step process in case of a hit (+)
§ cache needs to be flushed on a context switch unless address space

identifiers (ASIDs) included in tags (-)
§ aliasing problems due to the sharing of pages (-)
§ maintaining cache coherence (-)

CPU Physical
CacheTLB Primary

Memory
VA PA PA

Alternative: place the cache before the TLB

Virtual
CacheCPU

VA (StrongARM)PA
TLB

Primary
MemoryVA

Virtually Addressed Cache
(Virtual Index/Virtual Tag)

11

PC

Inst.
TLB

Inst.
Cache D Decode E M Data

Cache W+

Data
TLB

Main Memory (DRAM)

Memory Controller
Physical
Address

Instruction data
Physical Address

Physical
Address

Page-Table
Base Register

Virtual
Address

Virtual
Address

Hardware Page
Table Walker

Miss?Miss?

Translate on miss

Aliasing in Virtual-Address Caches

12

VA1

VA2

Page Table

Data Pages

PA

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Two virtual pages share
one physical page

Virtual cache can have two copies of
same physical data. Writes to one
copy not visible to reads of other!

General Solution: Prevent aliases coexisting in cache

Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this ensures
all VAs accessing same PA will conflict in direct-mapped cache
(early SPARCs)

Concurrent Access to TLB & Cache
(Virtual Index/Physical Tag)

13

Index L is available without consulting the TLB
→ cache and TLB accesses can begin simultaneously!

Tag comparison is made after both accesses are completed
Cases: L + b = k, L + b < k, L + b > k

VPN L b

TLB Direct-map Cache
2L blocks

2b-byte blockPPN Page Offset

=
hit? DataPhysical Tag

Tag

VA

PA

Virtual
Index

k

Virtual-Index Physical-Tag Caches:
Associative Organization

14
How does this scheme scale to larger caches?

VPN a L = k-b b

TLB Direct-map
2L blocks

PPN Page Offset
=

hit?

Data

Phy.
Tag

Tag

VA

PA

Virtual
Index

k
Direct-map

2L blocks

2a

=
2a

After the PPN is known, 2a physical tags are compared

CS152 Administrivia

§ PS 2 due Wednesday Feb 27
§ Midterm in class Monday March 6

– Covers lectures 1 – 9, plus assigned problem sets, labs, book readings

§ Lab 2 due Monday March 11

15

CS252

CS252 Administrivia
§ Start thinking of class projects and forming teams of two
§ Proposal due Wednesday February 27th

§ Proposal should be one page PDF including:
– Title

– Team member names

– What are you trying to do?

– How is it done today?

– What is your idea for improvement and why do you think you’ll be
successful

– What infrastructure are you going to use for your project?

– Project timeline with milestones

§ Mail PDF of proposal to instructors

§ Give a <5-minute presentation in class in discussion
section time on March 11th

§ No discussion on Mnoday March 4th – midterm!

16

Concurrent Access to TLB & Large L1
The problem with L1 > Page size

17

Can VA1 and VA2 both map to PA ?

VPN a Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index
L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data
VA1

VA2

A solution via Second-Level Cache

18

Usually a common L2 cache backs up both Instruction
and Data L1 caches

L2 is “inclusive” of both Instruction and Data caches
• Inclusive means L2 has copy of any line in either L1

CPU
L1 Data
Cache

L1
Instruction

Cache Unified L2
Cache

RF Memory
Memory
Memory
Memory

Anti-Aliasing Using L2 [MIPS R10000,1996]

19

§ Suppose VA1 and VA2 both map to PA and
VA1 is already in L1, L2 (VA1 ¹ VA2)

§ After VA2 is resolved to PA, a collision will be
detected in L2.

§ VA1 will be purged from L1 and L2, and VA2
will be loaded Þ no aliasing !

VPN a Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index
L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

Direct-Mapped L2

PA a1 Data

PPN

into L2 tag

Anti-Aliasing using L2 for a Virtually
Addressed L1

20

VPN Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual
Index & Tag

Physical
Index & Tag

L1 VA Cache

L2 PA Cache
L2 “contains” L1

PA VA1 Data

VA1 Data

VA2 Data

“Virtual Tag”

Physically-addressed L2 can also be
used to avoid aliases in virtually-
addressed L1

CS252

Atlas Revisited

§ One PAR for each physical page

§ PAR’s contain the VPN’s of the pages
resident in primary memory

§ Advantage: The size is proportional
to the size of the primary memory

§ What is the disadvantage ?

21

VPN

PAR’s

PPN

CS252

Hashed Page Table:
Approximating Associative Addressing

22

§ Hashed Page Table is typically 2 to 3 times larger
than the number of PPN’s to reduce collision
probability

§ It can also contain DPN’s for some non-resident
pages (not common)

§ If a translation cannot be resolved in this table then
the software consults a data structure that has an
entry for every existing page (e.g., full page table)

hash
Offset

Base of Table

+ PA of PTE

Primary
Memory

VPN PID PPN

Page Table
VPN d Virtual Address

VPN PID DPN

VPN PID

PID

CS252

Power PC: Hashed Page Table

§ Each hash table slot has 8 PTE's <VPN,PPN> that
are searched sequentially

§ If the first hash slot fails, an alternate hash
function is used to look in another slot

All these steps are done in hardware!
§ Hashed Table is typically 2 to 3 times larger than

the number of physical pages

§ The full backup Page Table is managed in software

23

Base of Table

hash
Offset + PA of Slot

Primary
Memory

VPN PPN

Page Table
VPN d 80-bit VA

VPN

RISC-V Privilege Modes

§ Machine mode (M-mode)
-AKA monitor mode, microcode mode, …

§ Hypervisor-Extended Supervisor Mode (HS-
Mode)

§ Supervisor Mode (S-mode)
§ User Mode (U-mode)

§ Supported combinations of modes:
-M (simple embedded systems)
-M, U (embedded systems with security)
-M, S, U (systems running Unix-like operating systems)
-M, S, HS, U (systems running hypervisors)

RISC-V System State
§ Processor registers

- Compute registers
- General-purpose (x0-x31)
- Optional floating-point (f0-f31)
- Optional vector (v0-v31)
- Optional custom

- Control and status registers (CSRs)
- Accessibility controlled by privilege mode

§ System main memory
§ System I/O devices
§ All system memory and device control registers mapped into

flat machine physical address space

25

Physical Memory Protection (PMP)

26

Core Bus Master
DeviceCore Bus Master

Device

PMP PMP ioPMP ioPMP

SoC Bus Matrix

Main Memory Device control
registers Device RAM

Machine Physical Address Space

0x
0…
00
0

0x
F…
FF
F

M-Mode controls PMPs
§ M-mode has access to entire machine after reset
§ Configures PMPs and ioPMPs to contain each active

context inside a physical partition
§ Can even restrict M-mode access to regions until next

reset
§ M-mode can dynamically swap PMP settings to run

different security contexts on a hart

27

RISC-V PMP Configuration

28

NAPOT = Naturally Aligned Power-of-2

Multiple Concurrent Security Contexts

29

Core Bus Master
DeviceCore Bus Master

Device

PMP PMP ioPMP ioPMP

SoC Bus Matrix

Main Memory Device control
registers Device RAM

Machine Physical Address Space

0x
0…
00
0

0x
F…
FF
F

RISC-V Secure Embedded Systems
(M, U modes)

§ M-mode runs secure boot and runtime monitor
§ Embedded code runs in U-mode
§ Physical memory protection (PMP) on U-mode accesses
§ Interrupt handling can be delegated to U-mode code
-User-level interrupt support (N-extension)

§ Provides arbitrary number of isolated security contexts

30

M-mode monitor

U-mode
process 1

U-mode
process 2

Device 2
Interrupts

Device 1
Interrupts

Other
Interrupts

PMP PMP

RISC-V Virtual Memory Architectures
(M, S, U modes)

§ Designed to support current Unix-style operating
systems

§ Sv32 (RV32)
- Demand-paged 32-bit virtual-address spaces
- 2-level page table
- 4 KiB pages, 4 MiB megapages

§ Sv39 (RV64)
- Demand-paged 39-bit virtual-address spaces
- 3-level page table
- 4 KiB pages, 2 MiB megapages, 1 GiB gigapages

§ Sv48, Sv57, Sv64 (RV64)
- Sv39 + 1/2/3 more page-table levels

31

S-Mode runs on top of M-mode
§ M-mode runs secure boot and monitor
§ S-mode runs OS
§ U-mode runs application on top of OS or M-mode

32

M-mode security monitor

U-mode
system process S-mode

OS
Device 2
Interrupts

Device 1
Interrupts

Secure
Interrupts

U-mode
app

PMP PMP

VM
S-mode

OS

U-mode
app

PMP

VM

VM features track historical uses:
§ Bare machine, only physical addresses

– One program owned entire machine
§ Batch-style multiprogramming

– Several programs sharing CPU while waiting for I/O
– Base & bound: translation and protection between programs (supports
swapping entire programs but not demand-paged virtual memory)

– Problem with external fragmentation (holes in memory), needed
occasional memory defragmentation as new jobs arrived

§ Time sharing
– More interactive programs, waiting for user. Also, more jobs/second.
– Motivated move to fixed-size page translation and protection, no

external fragmentation (but now internal fragmentation, wasted bytes in
page)

– Motivated adoption of virtual memory to allow more jobs to share
limited physical memory resources while holding working set in memory

§ Virtual Machine Monitors
– Run multiple operating systems on one machine
– Idea from 1970s IBM mainframes, now common on laptops

• e.g., run Windows on top of Mac OS X
– Hardware support for two levels of translation/protection

• Guest OS virtual -> Guest OS physical -> Host machine physical 33

Virtual Memory Use Today - 1

§ Servers/desktops/laptops/smartphones have full demand-
paged virtual memory

– Portability between machines with different memory sizes
– Protection between multiple users or multiple tasks
– Share small physical memory among active tasks
– Simplifies implementation of some OS features

§ Vector supercomputers have translation and protection
but rarely complete demand-paging

§ (Older Crays: base&bound, Japanese & Cray X1/X2: pages)
– Don’t waste expensive CPU time thrashing to disk (make jobs fit in

memory)
– Mostly run in batch mode (run set of jobs that fits in memory)
– Difficult to implement restartable vector instructions

34

Virtual Memory Use Today - 2

§Most embedded processors and DSPs
provide physical addressing only

– Can’t afford area/speed/power budget for virtual
memory support

– Often there is no secondary storage to swap to!
– Programs custom written for particular memory

configuration in product
– Difficult to implement restartable instructions for

exposed architectures

35

Acknowledgements

§ This course is partly inspired by previous MIT
6.823 and Berkeley CS252 computer architecture
courses created by my collaborators and
colleagues:

– Arvind (MIT)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)

36

