
CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 10 – Complex Pipelines,
Out-of-Order Issue, Register Renaming

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

Last time in Lecture 9

§ Modern page-based virtual memory systems provide:
– Translation, Protection, Virtual memory.

§ Translation and protection information stored in page
tables, held in main memory

§ Translation and protection information cached in
“translation-lookaside buffer” (TLB) to provide single-cycle
translation+protection check in common case

§ Virtual memory interacts with cache design
– Physical cache tags require address translation before tag lookup, or use

untranslated offset bits to index cache.

– Virtual tags do not require translation before cache hit/miss
determination, but need to be flushed or extended with ASID to cope
with context swaps. Also, must deal with virtual address aliases (usually
by disallowing copies in cache).

2

Types of Data Hazards

3

Consider executing a sequence of
rk ← ri op rj

type of instructions
Data-dependence

r3 ← r1 op r2 Read-after-Write
r5 ← r3 op r4 (RAW) hazard

Anti-dependence
r3 ← r1 op r2 Write-after-Read
r1 ← r4 op r5 (WAR) hazard

Output-dependence
r3 ← r1 op r2 Write-after-Write
r3 ← r6 op r7 (WAW) hazard

Register vs. Memory Dependence

Data hazards due to register operands can be
determined at the decode stage, but data hazards
due to memory operands can be determined only
after computing the effective address

Store: M[r1 + disp1] ← r2
Load: r3 ← M[r4 + disp2]

Does (r1 + disp1) = (r4 + disp2) ?

4

Data Hazards: An Example

5

I1 FDIV.D f6, f6, f4

I2 FLD f2, 45(x3)

I3 FMUL.D f0, f2, f4

I4 FDIV.D f8, f6, f2

I5 FSUB.D f10, f0, f6

I6 FADD.D f6, f8, f2

RAW Hazards
WAR Hazards
WAW Hazards

Complex Pipelining: Motivation

Pipelining becomes complex when we want
high performance in the presence of:
§ Long latency or partially pipelined floating-

point units
§ Memory systems with variable access time
§ Multiple arithmetic and memory units

6

Issues in Complex Pipeline Control

7

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

• Structural conflicts at the execution stage if some FPU or memory unit is not
pipelined and takes more than one cycle
• Structural conflicts at the write-back stage due to variable latencies of different
functional units
• Out-of-order write hazards due to variable latencies of different functional
units
• How to handle exceptions?

Recap: Complex In-Order Pipeline

8

§ Delay writeback so all
operations have same
latency to W stage

– Write ports never oversubscribed
(one inst. in & one inst. out every
cycle)

– Stall pipeline on long latency
operations, e.g., divides, cache
misses

– Handle exceptions in-order at
commit point

Commit
Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined
divider

How to prevent increased writeback latency
from slowing down single-cycle integer
operations? Bypassing

Complex Pipeline

9

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

Can we solve write
hazards without
equalizing all pipeline
depths and without
bypassing?

Instruction Scheduling

10

I6

I2

I4

I1

I5

I3

Valid orderings:
in-order I1 I2 I3 I4 I5 I6

out-of-order

out-of-order

I1 FDIV.D f6, f6, f4

I2 FLD f2, 45(x3)

I3 FMULT.D f0, f2, f4

I4 FDIV.D f8, f6, f2

I5 FSUB.D f10, f0, f6

I6 FADD.D f6, f8, f2

I2 I1 I3 I4 I5 I6

I1 I2 I3 I5 I4 I6

Out-of-order Completion
In-order Issue

11

Latency
I1 FDIV.D f6, f6, f4 4

I2 FLD f2, 45(x3) 1

I3 FMULT.D f0, f2, f4 3

I4 FDIV.D f8, f6, f2 4

I5 FSUB.D f10, f0, f6 1

I6 FADD.D f6, f8, f2 1

in-order comp 1 2

out-of-order comp 1 2

1 2 3 4 3 5 4 6 5 6

2 3 1 4 3 5 5 4 6 6

When is it Safe to Issue an Instruction?

Suppose a data structure keeps track of all the
instructions in all the functional units
The following checks need to be made before the
Issue stage can dispatch an instruction
§ Is the required function unit available?
§ Is the input data available? (RAW?)
§ Is it safe to write the destination? (WAR?WAW?)
§ Is there a structural conflict at the WB stage?

12

A Data Structure for Correct Issues
Keeps track of the status of Functional Units

13

The instruction i at the Issue stage consults this table
FU available? check the busy column
RAW? search the dest column for i’s sources
WAR? search the source columns for i’s destination
WAW? search the dest column for i’s destination

An entry is added to the table if no hazard is detected;
An entry is removed from the table after Write-Back

Name Busy Op Dest Src1 Src2
Int
Mem
Add1
Add2
Add3
Mult1
Mult2
Div

Simplifying the Data Structure
Assuming In-order Issue

14

Suppose the instruction is not dispatched by the Issue stage if a
RAW hazard exists or the required FU is busy, and that operands
are latched by functional unit on issue:

Can the dispatched instruction cause a
WAR hazard ?

WAW hazard ?
NO: Operands read at issue

YES: Out-of-order completion

Simplifying the Data Structure ...

§ No WAR hazard
è no need to keep src1 and src2

§ The Issue stage does not dispatch an instruction
in case of a WAW hazard
è a register name can occur at most once in the dest column

§ WP[reg#] : a bit-vector to record the registers for
which writes are pending

– These bits are set by the Issue stage and cleared by the WB stage
è Each pipeline stage in the FU's must carry the register
destination field and a flag to indicate if it is valid

15

Scoreboard for In-order Issues

16

Busy[FU#] : a bit-vector to indicate FU’s availability.
(FU = Int, Add, Mult, Div)

These bits are hardwired to FU's.

WP[reg#] : a bit-vector to record the registers for which writes
are pending.

These bits are set by Issue stage and cleared by WB stage

Issue checks the instruction (opcode dest src1 src2)
against the scoreboard (Busy & WP) to dispatch

FU available?
RAW?
WAR?
WAW?

Busy[FU#]
WP[src1] or WP[src2]
cannot arise
WP[dest]

Scoreboard Dynamics

17

I1 FDIV.D f6, f6, f4
I2 FLD f2, 45(x3)
I3 FMULT.D f0, f2, f4
I4 FDIV.D f8, f6, f2
I5 FSUB.D f10, f0, f6
I6 FADD.D f6, f8, f2

Functional Unit Status Registers Reserved
Int(1) Add(1) Mult(3) Div(4) WB for Writes

t0 I1 f6 f6
t1 I2 f2 f6 f6, f2
t2 f6 f2 f6, f2 I2

t3 I3 f0 f6 f6, f0
t4 f0 f6 f6, f0 I1

t5 I4 f0 f8 f0, f8
t6 f8 f0 f0, f8 I3

t7 I5 f10 f8 f8, f10
t8 f8 f10 f8, f10 I5

t9 f8 f8 I4

t10 I6 f6 f6
t11 f6 f6 I6

In-Order Issue Limitations: an example

18

latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.D f6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4, f2, f8 4

6 FADD.D f10, f6, f4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

34

5

6

In-order issue restriction prevents
instruction 4 from being dispatched

Out-of-Order Issue

§ Issue stage buffer holds multiple instructions waiting to issue.
§ Decode adds next instruction to buffer if there is space and

the instruction does not cause a WAR or WAW hazard.
– Note: WAR possible again because issue is out-of-order (WAR not possible

with in-order issue and latching of input operands at functional unit)

§ Any instruction in buffer whose RAW hazards are satisfied can
be issued (for now, at most one dispatch per cycle). On a write
back (WB), new instructions may get enabled.

19

IF ID WB

ALU Mem

Fadd

Fmul

Issue

Issue Limitations: In-Order and Out-of-Order

20

latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.Df6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4, f2, f8 4

6 FADD.D f10, f6, f4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

34

5

6

Out-of-order: 1 (2,1) 4 4 2 3 . . 3 5 . . . 5 6 6

Out-of-order execution did not allow any significant improvement!

How many instructions can be in the pipeline?

21

Which features of an ISA limit the number of
instructions in the pipeline?

Out-of-order dispatch by itself does not provide any
significant performance improvement!

Number of Registers

CS152 Administrivia

§ Midterm in class Monday March 6
– Covers lectures 1 – 9, plus assigned problem sets, labs, book readings

§ Lab 2 due Monday March 11

22

CS252

CS252 Administrivia
§ No discussion on Monday March 4th – midterm!
§ Give a <5-minute presentation in class in discussion

section time on March 11th

23

Overcoming the Lack of Register Names

24

Floating Point pipelines often cannot be kept filled with
small number of registers.

IBM 360 had only 4 floating-point registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA compatibility ?

Robert Tomasulo of IBM suggested an ingenious solution
in 1967 using on-the-fly register renaming

Issue Limitations: In-Order and Out-of-Order

25

latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.D f6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4’, f2, f8 4

6 FADD.D f10, f6, f4’ 1

1 2

34

5

6

Any antidependence can be eliminated by renaming.
(renaming è additional storage)
Can it be done in hardware? yes!

X

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6
Out-of-order: 1 (2,1) 4 4 5 . . . 2 (3,5) 3 6 6

Register Renaming

26

§ Decode does register renaming and adds instructions to the
issue-stage instruction reorder buffer (ROB)

è renaming makes WAR or WAW hazards impossible

§ Any instruction in ROB whose RAW hazards have been satisfied
can be dispatched

è Out-of-order or dataflow execution

IF ID WB

ALU Mem

Fadd

Fmul

Issue

Renaming Structures

27

Renaming
table &
regfile

Reorder
buffer

Load
Unit

FU FU Store
Unit
< t, result >

Ins# use exec op p1 src1 p2 src2 t1
t2
.
.
tn

• Instruction template (i.e., tag t) is allocated by the Decode
stage, which also associates tag with register in regfile
• When an instruction completes, its tag is deallocated

Replacing the
tag by its value
is an expensive
operation

Reorder Buffer Management

28

Instruction slot is candidate for execution when:
• It holds a valid instruction (“use” bit is set)
• It has not already started execution (“exec” bit is clear)
• Both operands are available (p1 and p2 are set)

t1
t2
.
.
.

tn

ptr2
next to

deallocate

ptr1
next

available

Ins# use exec op p1 src1 p2 src2

Destination registers
are renamed to the
instruction’s slot tag

ROB managed circularly
•“exec” bit is set when instruction begins execution
•When an instruction completes its “use” bit is marked free
• ptr2 is incremented only if the “use” bit is marked free

Renaming & Out-of-order Issue
An example

29

• When are tags in sources
replaced by data?

• When can a name be reused?

1 FLD f2, 34(x2)
2 FLD f4, 45(x3)
3 FMULT.D f6, f4, f2
4 FSUB.D f8, f2, f2
5 FDIV.D f4, f2, f8
6 FADD.D f10, f6, f4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1
t2
t3
t4
t5
.
.

data / ti

p data
f1
f2
f3
f4
f5
f6
f7
f8

Whenever an FU produces data

Whenever an instruction completes

t1
1 1 0 LD

t2

2 1 0 LD

5 1 0 DIV 1 v1 0 t4
4 1 0 SUB 1 v1 1 v1

t4

3 1 0 MUL 0 t2 1 v1

t3

t5

v1
v1

1 1 1 LD 0

4 1 1 SUB 1 v1 1 v14 0

v4

5 1 0 DIV 1 v1 1 v4

2 1 1 LD 2 0
3 1 0 MUL 1 v2 1 v1

IBM 360/91 Floating-Point Unit
R. M. Tomasulo, 1967

30

Mult

1

1
2
3
4
5
6

load
buffers
(from
memory)

1
2
3
4

Adder

1
2
3

Floating-Point
Regfile

store buffers
(to memory)

...

instructions

Common bus ensures that data is made available
immediately to all the instructions waiting for it.
Match tag, if equal, copy value & set presence “p”.

Distribute
instruction
templates
by
functional
units

< tag, result >

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data

p tag/data
p tag/data2

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data
p tag/data

CS252

IBM ACS

§ Second supercomputer project (Y) started at IBM in
response to CDC6600

§ Multiple Dynamic instruction Scheduling (DIS) invented by
Lynn Conway for ACS

– Used unary encoding of register specifiers and wired-OR logic to detect
any hazards (similar design used in Alpha 21264 in 1995!)

§ Seven-issue, out-of-order processor
– Two decoupled streams, each with DIS

§ Cancelled in favor of IBM360-compatible machines

31

Out-of-Order Fades into Background

Out-of-order processing implemented
commercially in 1960s, but disappeared again until
1990s as two major problems had to be solved:
§ Precise traps

– Imprecise traps complicate debugging and OS code
– Note, precise interrupts are relatively easy to provide

§ Branch prediction
– Amount of exploitable instruction-level parallelism (ILP) limited

by control hazards

Also, simpler machine designs in new technology
beat complicated machines in old technology

– Big advantage to fit processor & caches on one chip
– Microprocessors had era of 1%/week performance scaling

32

In-Order Commit for Precise Traps

§ In-order instruction fetch and decode, and dispatch to
reservation stations inside reorder buffer

§ Instructions issue from reservation stations out-of-order
§ Out-of-order completion, values stored in temporary

buffers
§ Commit is in-order, checks for traps, and if none updates

architectural state 33

Fetch Decode

Execute

CommitReorder Buffer

In-order In-orderOut-of-order

Trap?
Kill

Kill Kill

Inject handler PC

Separating Completion from Commit

§ Re-order buffer holds register results from
completion until commit

– Entries allocated in program order during decode
– Buffers completed values and exception state until in-order

commit point
– Completed values can be used by dependents before committed

(bypassing)
– Each entry holds program counter, instruction type, destination

register specifier and value if any, and exception status (info
often compressed to save hardware)

§ Memory reordering needs special data structures
– Speculative store address and data buffers
– Speculative load address and data buffers

34

Phases of Instruction Execution

35

Fetch: Instruction bits retrieved from
instruction cache.I-cache

Fetch Buffer

Issue Buffer

Functional Units

Architectural
State

Execute: Instructions and operands issued to
functional units. When execution completes,
all results and exception flags are available.

Decode: Instructions dispatched to
appropriate issue buffer

Result Buffer
Commit: Instruction irrevocably updates
architectural state (aka “graduation”), or
takes precise trap/interrupt.

PC

Commit

Decode/Rename

In-Order versus Out-of-Order Phases

§ Instruction fetch/decode/rename always in-order
– Need to parse ISA sequentially to get correct semantics
– Proposals for speculative OoO instruction fetch, e.g., Multiscalar.

Predict control flow and data dependencies across sequential
program segments fetched/decoded/executed in parallel, fixup if
prediction wrong

§ Dispatch (place instruction into machine buffers
to wait for issue) also always in-order

– Some use “Dispatch” to mean “Issue”, but not in these lectures

36

In-Order Versus Out-of-Order Issue

§ In-order issue:
– Issue stalls on RAW dependencies or structural

hazards, or possibly WAR/WAW hazards
– Instruction cannot issue to execution units unless all

preceding instructions have issued to execution units

§Out-of-order issue:
– Instructions dispatched in program order to

reservation stations (or other forms of instruction
buffer) to wait for operands to arrive, or other hazards
to clear

– While earlier instructions wait in issue buffers,
following instructions can be dispatched and issued
out-of-order

37

In-Order versus Out-of-Order Completion

§ All but the simplest machines have out-of-order
completion, due to different latencies of
functional units and desire to bypass values as
soon as available

§ Classic RISC 5-stage integer pipeline just barely
has in-order completion

– Load takes two cycles, but following one-cycle integer op
completes at same time, not earlier

– Adding pipelined FPU immediately brings OoO completion

38

Acknowledgements

§ This course is partly inspired by previous MIT 6.823 and
Berkeley CS252 computer architecture courses created by
my collaborators and colleagues:

– Arvind (MIT)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)

39

