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Last time in Lecture 9

§ Modern page-based virtual memory systems provide:
– Translation, Protection, Virtual memory.

§ Translation and protection information stored in page 
tables, held in main memory

§ Translation and protection information cached in 
“translation-lookaside buffer” (TLB) to provide single-cycle 
translation+protection check in common case

§ Virtual memory interacts with cache design
– Physical cache tags require address translation before tag lookup, or use 

untranslated offset bits to index cache.

– Virtual tags do not require translation before cache hit/miss 
determination, but need to be flushed or extended with ASID to cope 
with context swaps.  Also, must deal with virtual address aliases (usually 
by disallowing copies in cache).
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Types of Data Hazards 
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Consider executing a sequence of 
rk ← ri op  rj

type of instructions
Data-dependence

r3 ←  r1 op r2 Read-after-Write  
r5 ←  r3 op r4 (RAW) hazard

Anti-dependence
r3 ←  r1 op r2 Write-after-Read 
r1 ←  r4 op r5 (WAR) hazard

Output-dependence
r3 ←  r1 op r2 Write-after-Write 
r3 ←  r6 op r7 (WAW) hazard



Register vs. Memory Dependence

Data hazards due to register operands can be 
determined at the decode stage, but data hazards 
due to memory  operands can be determined only 
after computing the effective address

Store: M[r1 + disp1] ← r2  
Load: r3 ← M[r4 + disp2]

Does (r1 + disp1) = (r4 + disp2) ?
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Data Hazards: An Example
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I1 FDIV.D f6, f6, f4

I2 FLD f2, 45(x3)

I3 FMUL.D f0, f2, f4

I4 FDIV.D f8, f6, f2

I5 FSUB.D f10, f0, f6

I6 FADD.D f6, f8, f2

RAW Hazards
WAR Hazards
WAW Hazards



Complex Pipelining: Motivation

Pipelining becomes complex when we want 
high performance in the presence of:
§ Long latency or partially pipelined floating-

point units
§ Memory systems with variable access time
§ Multiple arithmetic and memory units
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Issues in Complex Pipeline Control
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IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

• Structural conflicts at the execution stage if some FPU or memory unit is not 
pipelined and takes more than one cycle
• Structural conflicts at the write-back stage due to variable latencies of different 
functional units
• Out-of-order write hazards due to variable latencies of different functional 
units
• How to handle exceptions?



Recap: Complex In-Order Pipeline
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§ Delay writeback so all 
operations have same 
latency to W stage

– Write ports never oversubscribed 
(one inst. in & one inst. out every 
cycle)

– Stall pipeline on long latency 
operations, e.g., divides, cache 
misses

– Handle exceptions in-order at 
commit point

Commit 
Point

PC
Inst. 
Mem D Decode X1 X2

Data 
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined 
divider

How to prevent increased writeback latency 
from slowing down single-cycle integer 
operations? Bypassing



Complex Pipeline
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IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

Can we solve write 
hazards without 
equalizing all pipeline 
depths and without 
bypassing?



Instruction Scheduling
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I6

I2

I4

I1

I5

I3

Valid orderings:
in-order I1 I2 I3 I4 I5 I6

out-of-order

out-of-order

I1 FDIV.D f6, f6, f4

I2 FLD f2, 45(x3)

I3 FMULT.D f0, f2, f4

I4 FDIV.D f8, f6, f2

I5 FSUB.D f10, f0, f6

I6 FADD.D f6, f8, f2

I2 I1 I3 I4 I5 I6

I1 I2 I3 I5 I4 I6



Out-of-order Completion
In-order Issue
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Latency
I1 FDIV.D f6, f6, f4 4

I2 FLD f2, 45(x3) 1

I3 FMULT.D f0, f2, f4 3

I4 FDIV.D f8, f6, f2 4

I5 FSUB.D f10, f0, f6 1

I6 FADD.D f6, f8, f2 1

in-order comp 1   2

out-of-order comp  1   2

1 2 3   4        3 5   4 6   5 6

2 3   1 4   3 5   5 4 6   6



When is it Safe to Issue an Instruction?

Suppose a data structure keeps track of all the 
instructions in all the functional units
The following checks need to be made before the 
Issue stage can dispatch an instruction
§ Is the required function unit available?
§ Is the input data available?   (RAW?)
§ Is it safe to write the destination? (WAR?WAW?)
§ Is there a structural conflict at the WB stage?
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A Data Structure for Correct Issues
Keeps track of the status of Functional Units
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The instruction i at the Issue stage consults this table
FU available? check the busy column
RAW? search the dest column for i’s sources
WAR? search the source columns for i’s destination
WAW? search the dest column for i’s destination

An entry is added to the table if no hazard is detected;
An entry is removed from the table after Write-Back

Name Busy Op Dest Src1 Src2
Int
Mem
Add1
Add2
Add3
Mult1
Mult2
Div



Simplifying the Data Structure 
Assuming In-order Issue
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Suppose the instruction is not dispatched by the Issue stage if a 
RAW hazard exists or the required FU is busy, and that operands 
are latched by functional unit on issue:

Can the dispatched instruction cause a
WAR hazard ?

WAW hazard ?
NO: Operands read at issue

YES: Out-of-order completion



Simplifying the Data Structure ...

§ No WAR hazard 
è no need to keep src1 and src2

§ The Issue stage does not dispatch an instruction 
in case of a WAW hazard
è a register name can occur at most once in the dest column

§ WP[reg#] : a bit-vector to record the registers for 
which writes are pending

– These bits are set by the Issue stage and cleared by the WB stage
è Each pipeline stage in the FU's must carry the register 
destination field and a flag to indicate if it is valid
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Scoreboard for In-order Issues
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Busy[FU#] : a bit-vector to indicate FU’s availability.
(FU = Int, Add, Mult, Div)

These bits are hardwired to FU's.

WP[reg#] : a bit-vector to record the registers for which writes 
are pending. 

These bits are set by Issue stage and cleared by WB stage

Issue checks the instruction (opcode dest src1 src2) 
against the scoreboard (Busy & WP) to dispatch

FU available? 
RAW?
WAR?
WAW?

Busy[FU#]
WP[src1] or WP[src2]
cannot arise
WP[dest]



Scoreboard Dynamics
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I1 FDIV.D f6, f6, f4
I2 FLD f2, 45(x3) 
I3 FMULT.D f0, f2, f4
I4 FDIV.D f8, f6, f2
I5 FSUB.D f10, f0, f6
I6 FADD.D f6, f8, f2

Functional Unit Status Registers Reserved 
Int(1) Add(1)  Mult(3)   Div(4)    WB for Writes

t0  I1 f6 f6
t1  I2 f2 f6 f6, f2
t2 f6 f2 f6, f2 I2

t3  I3 f0 f6 f6, f0
t4 f0 f6 f6, f0 I1

t5  I4 f0 f8 f0, f8
t6 f8 f0 f0, f8 I3

t7  I5 f10 f8 f8, f10
t8 f8 f10 f8, f10 I5

t9 f8 f8 I4

t10 I6 f6 f6
t11 f6 f6 I6



In-Order Issue Limitations: an example
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latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.D f6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4, f2, f8 4

6 FADD.D f10, f6, f4 1

In-order: 1 (2,1) .  .  .  .  .  .  2 3 4 4 3 5 .  .  . 5 6 6

1 2

34

5

6

In-order issue restriction prevents 
instruction 4 from being dispatched



Out-of-Order Issue

§ Issue stage buffer holds multiple instructions waiting to issue.
§ Decode adds next instruction to buffer if there is space and 

the instruction does not cause a WAR or WAW hazard.
– Note: WAR possible again because issue is out-of-order (WAR not possible 

with in-order issue and latching of input operands at functional unit)

§ Any instruction in buffer whose RAW hazards are satisfied can 
be issued (for now, at most one dispatch per cycle). On a write 
back (WB), new instructions may get enabled.
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IF ID WB

ALU Mem

Fadd

Fmul

Issue



Issue Limitations: In-Order and Out-of-Order
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latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.Df6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4, f2, f8 4

6 FADD.D f10, f6, f4 1

In-order: 1 (2,1) .  .  .  .  .  .  2 3 4 4 3 5 .  .  . 5 6 6

1 2

34

5

6

Out-of-order: 1 (2,1) 4 4 .  .  .  .  2 3  .  .  3 5 .  .  . 5 6 6

Out-of-order execution did not allow any significant improvement!



How many instructions can be in the pipeline?
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Which features of an ISA limit the number of
instructions in the pipeline?

Out-of-order dispatch by itself does not provide any 
significant performance improvement!

Number of Registers



CS152 Administrivia

§ Midterm in class Monday March 6
– Covers lectures 1 – 9, plus assigned problem sets, labs, book readings

§ Lab 2 due Monday March 11
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CS252

CS252 Administrivia
§ No discussion on Monday March 4th – midterm!
§ Give a <5-minute presentation in class in discussion 

section time on March 11th

23



Overcoming the Lack of Register Names
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Floating Point pipelines often cannot be kept filled with 
small number of registers.

IBM 360 had only 4 floating-point registers

Can a microarchitecture use more registers than 
specified by the ISA without loss of ISA compatibility ?

Robert Tomasulo of IBM suggested an ingenious solution 
in 1967 using on-the-fly register renaming



Issue Limitations: In-Order and Out-of-Order
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latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.D f6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4’, f2, f8 4

6 FADD.D f10, f6, f4’ 1

1 2

34

5

6

Any antidependence can be eliminated by renaming.
(renaming è additional storage)  
Can it be done in hardware? yes!

X

In-order: 1 (2,1) .  .  .  .  .  .  2 3 4 4 3 5 .  .  . 5 6 6
Out-of-order: 1 (2,1) 4 4 5  .  .  .  2 (3,5) 3 6 6



Register Renaming
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§ Decode does register renaming and adds instructions to the 
issue-stage instruction reorder buffer (ROB)

è renaming makes WAR or WAW hazards impossible

§ Any instruction in ROB whose RAW hazards have been satisfied 
can be dispatched

è Out-of-order or dataflow execution

IF ID WB

ALU Mem

Fadd

Fmul

Issue



Renaming Structures
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Renaming 
table &
regfile

Reorder 
buffer

Load
Unit

FU FU Store
Unit
< t, result >

Ins# use  exec   op    p1    src1   p2   src2 t1
t2
.
.
tn

• Instruction template (i.e., tag t) is allocated by the Decode 
stage, which also associates tag with register in regfile
• When an instruction completes, its tag is deallocated

Replacing the 
tag by its value
is an expensive 
operation



Reorder Buffer Management
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Instruction slot is candidate for execution when:
• It holds a valid instruction (“use” bit is set)
• It has not already started execution (“exec” bit is clear)
• Both operands are available (p1 and p2 are set)

t1
t2
.
.
.

tn

ptr2
next to 

deallocate

ptr1
next

available

Ins#   use   exec      op     p1     src1   p2      src2

Destination registers 
are renamed to the 
instruction’s slot tag

ROB managed circularly
•“exec” bit is set when instruction begins execution 
•When an instruction completes its “use” bit is marked free
• ptr2 is incremented only if the “use” bit is marked free



Renaming & Out-of-order Issue
An example
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• When are tags in sources 
replaced by data?

• When can a name be reused?

1 FLD f2, 34(x2)
2 FLD f4, 45(x3)
3 FMULT.D f6, f4, f2
4 FSUB.D f8, f2, f2
5 FDIV.D f4, f2, f8
6 FADD.D f10, f6, f4

Renaming table Reorder buffer
Ins# use exec   op  p1   src1   p2  src2

t1
t2
t3
t4
t5
.
.

data / ti

p    data
f1
f2
f3
f4
f5
f6
f7
f8

Whenever an FU produces data

Whenever an instruction completes

t1
1          1        0        LD     

t2

2          1        0        LD     

5          1        0        DIV       1        v1           0         t4     
4          1        0        SUB     1        v1           1         v1

t4

3          1        0        MUL     0        t2            1         v1

t3

t5

v1
v1

1          1        1        LD     0

4          1        1        SUB     1        v1           1         v14           0

v4

5          1        0        DIV       1        v1           1         v4     

2          1        1        LD     2           0     
3          1        0        MUL     1        v2            1         v1



IBM 360/91 Floating-Point Unit
R. M. Tomasulo, 1967
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Mult

1

1
2
3
4
5
6

load
buffers
(from 
memory)

1
2
3
4

Adder

1
2
3

Floating-Point
Regfile

store buffers
(to memory)

...

instructions

Common bus ensures that data is made available 
immediately to all the instructions waiting for it.
Match tag, if equal, copy value & set presence “p”.

Distribute 
instruction 
templates
by 
functional
units

< tag, result >

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data

p tag/data
p tag/data2

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data
p tag/data



CS252

IBM ACS 

§ Second supercomputer project (Y) started at IBM in 
response to CDC6600

§ Multiple Dynamic instruction Scheduling (DIS) invented by 
Lynn Conway for ACS

– Used unary encoding of register specifiers and wired-OR logic to detect 
any hazards (similar design used in Alpha 21264 in 1995!)

§ Seven-issue, out-of-order processor
– Two decoupled streams, each with DIS

§ Cancelled in favor of IBM360-compatible machines
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Out-of-Order Fades into Background

Out-of-order processing implemented 
commercially in 1960s, but disappeared again until 
1990s as two major problems had to be solved:
§ Precise traps

– Imprecise traps complicate debugging and OS code
– Note, precise interrupts are relatively easy to provide

§ Branch prediction
– Amount of exploitable instruction-level parallelism (ILP) limited 

by control hazards

Also, simpler machine designs in new technology 
beat complicated machines in old technology

– Big advantage to fit processor & caches on one chip
– Microprocessors had era of 1%/week performance scaling
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In-Order Commit for Precise Traps

§ In-order instruction fetch and decode, and dispatch to 
reservation stations inside reorder buffer

§ Instructions issue from reservation stations out-of-order
§ Out-of-order completion, values stored in temporary 

buffers
§ Commit is in-order, checks for traps, and if none updates 

architectural state 33

Fetch Decode

Execute

CommitReorder Buffer

In-order In-orderOut-of-order

Trap?
Kill

Kill Kill

Inject handler PC



Separating Completion from Commit

§ Re-order buffer holds register results from 
completion until commit

– Entries allocated in program order during decode
– Buffers completed values and exception state until in-order 

commit point
– Completed values can be used by dependents before committed 

(bypassing)
– Each entry holds program counter, instruction type, destination 

register specifier and value if any, and exception status (info 
often compressed to save hardware)

§ Memory reordering needs special data structures
– Speculative store address and data buffers
– Speculative load address and data buffers
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Phases of Instruction Execution
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Fetch: Instruction bits retrieved from 
instruction cache.I-cache

Fetch Buffer

Issue Buffer

Functional Units

Architectural
State

Execute: Instructions and operands issued to 
functional units. When execution completes, 
all results and exception flags are available.

Decode: Instructions dispatched to 
appropriate issue buffer

Result Buffer
Commit: Instruction irrevocably updates 
architectural state (aka “graduation”), or 
takes precise trap/interrupt.

PC

Commit

Decode/Rename



In-Order versus Out-of-Order Phases

§ Instruction fetch/decode/rename always in-order
– Need to parse ISA sequentially to get correct semantics
– Proposals for speculative OoO instruction fetch, e.g., Multiscalar.  

Predict control flow and data dependencies across sequential 
program segments fetched/decoded/executed in parallel, fixup if 
prediction wrong

§ Dispatch (place instruction into machine buffers 
to wait for issue) also always in-order

– Some use “Dispatch” to mean “Issue”, but not in these lectures
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In-Order Versus Out-of-Order Issue

§ In-order issue:
– Issue stalls on RAW dependencies or structural 

hazards, or possibly WAR/WAW hazards
– Instruction cannot issue to execution units unless all 

preceding instructions have issued to execution units

§Out-of-order issue:
– Instructions dispatched in program order to 

reservation stations (or other forms of instruction 
buffer) to wait for operands to arrive, or other hazards 
to clear

– While earlier instructions wait in issue buffers, 
following instructions can be dispatched and issued 
out-of-order
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In-Order versus Out-of-Order Completion

§ All but the simplest machines have out-of-order 
completion, due to different latencies of 
functional units and desire to bypass values as 
soon as available

§ Classic RISC 5-stage integer pipeline just barely 
has in-order completion

– Load takes two cycles, but following one-cycle integer op 
completes at same time, not earlier

– Adding pipelined FPU immediately brings OoO completion
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