
CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 11 – Out-of-Order Execution

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

Last Time in Lecture 10

§ Pipelining is complicated by multiple and/or variable
latency functional units

§ Out-of-order and/or pipelined execution requires tracking
of dependencies (RAW, WAR, WAW)

§ OoO issue limited by WAR and WAW hazards caused by
reuse of architectural register names, removed by register
renaming

§ OoO issue and register renaming invented in mid-1960s
but disappeared in practice until 1990s, as simpler
architecture approaches (pipelining, caches) could more
easily take advantage of technology scaling

§ Also, two important problems had to be solved:
– Control hazards

– Precise traps and interrupts

2

Recap: In-Order Commit for Precise Traps

§ In-order instruction fetch and decode, and dispatch to
reservation stations inside reorder buffer

§ Instructions issue from reservation stations out-of-order
§ Out-of-order completion, values stored in temporary

buffers
§ Commit is in-order, checks for traps, and if none updates

architectural state 3

Fetch Decode

Execute

CommitReorder Buffer

In-order In-orderOut-of-order

Trap?
Kill

Kill Kill

Inject handler PC

Recap: Separating Completion from Commit

§ Re-order buffer holds register results from
completion until commit

– Entries allocated in program order during decode
– Buffers completed values and exception state until in-order

commit point
– Completed values can be used by dependents before committed

(bypassing)
– Each entry holds program counter, instruction type, destination

register specifier and value if any, and exception status (info
often compressed to save hardware)

§ Memory reordering needs special data structures
– Speculative store address and data buffers
– Speculative load address and data buffers

4

Recap: Phases of Instruction Execution

5

Fetch: Instruction bits retrieved from
instruction cache.I-cache

Fetch Buffer

Issue Buffer

Functional Units

Architectural
State

Execute: Instructions and operands issued to
functional units. When execution completes,
all results and exception flags are available.

Decode: Instructions dispatched to
appropriate issue buffer

Result Buffer
Commit: Instruction irrevocably updates
architectural state (aka “graduation”), or
takes precise trap/interrupt.

PC

Commit

Decode/Rename

In-Order versus Out-of-Order Phases

§ Instruction fetch/decode/rename always in-order
– Need to parse ISA sequentially to get correct semantics
– CS252:Proposals for speculative OoO instruction fetch, e.g.,

Multiscalar. Predict control flow and data dependencies across
sequential program segments fetched/decoded/executed in
parallel, fixup if prediction wrong

§ Dispatch (place instruction into machine buffers
to wait for issue) also always in-order

– Some use “Dispatch” to mean “Issue”, but not in these lectures

6

In-Order Versus Out-of-Order Issue

§ In-order (InO) issue:
– Issue stalls on RAW dependencies or structural

hazards, or possibly WAR/WAW hazards
– Instruction cannot issue to execution units unless all

preceding instructions have issued to execution units

§Out-of-order (OoO) issue:
– Instructions dispatched in program order to

reservation stations (or other forms of instruction
buffer) to wait for operands to arrive, or other hazards
to clear

– While earlier instructions wait in issue buffers,
following instructions can be dispatched and issued
out-of-order

7

In-Order versus Out-of-Order Completion

§ All but simplest machines have out-of-order
completion, due to different latencies of
functional units and desire to bypass values as
soon as available

§ Classic RISC 5-stage integer pipeline just barely
has in-order completion

– Load takes two cycles, but following one-cycle integer op
completes at same time, not earlier

– Adding pipelined FPU immediately brings OoO completion

8

In-Order versus Out-of-Order Commit

§ In-order commit supports precise traps, standard
today

– CS252: Some proposals to reduce the cost of in-order commit by
retiring some instructions early to compact reorder buffer, but this
is just an optimized in-order commit

§ Out-of-order commit was effectively what early
OoO machines implemented (imprecise traps) as
completion irrevocably changed machine state

– i.e., complete == commit in these machines

9

OoO Design Choices

§Where are reservation stations?
– Part of reorder buffer, or in separate issue window?
– Distributed by functional units, or centralized?

§How is register renaming performed?
– Tags and data held in reservation stations, with

separate architectural register file
– Tags only in reservation stations, data held in unified

physical register file

10

“Data-in-ROB” Design
(HP PA8000, Pentium Pro, Core2Duo, Nehalem)

§ Managed as circular buffer in program order, new instructions
dispatched to free slots, oldest instruction committed/reclaimed
when done (“p” bit set on result)

§ Tag is given by index in ROB (Free pointer value)
§ In dispatch, non-busy source operands read from architectural

register file and copied to Src1 and Src2 with presence bit “p” set.
Busy operands copy tag of producer and clear “p” bit.

§ Set valid bit “v” on dispatch, set issued bit “i” on issue
§ On completion, search source tags, set “p” bit and copy data into src

on tag match. Write result and exception flags to ROB.
§ On commit, check exception status, and copy result into architectural

register file if no trap.
§ On trap, flush machine and ROB, set free=oldest, jump to handler

Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode

Oldest

Free

11

Managing Rename for Data-in-ROB

§ If “p” bit set, then use value in architectural register file

§ Else, tag field indicates instruction that will/has produced value

§ For dispatch, read source operands <p,tag,value> from arch. regfile,

then also read <p,result> from producing instruction in ROB at tag

index, bypassing as needed. Copy operands to ROB.

§ Write destination arch. register entry with <0,Free,_>, to assign tag to

ROB index of this instruction

§ On commit, update arch. regfile with <1, _, Result>

§ On trap, reset table (All p=1)

12

Tagp Value

Tagp Value

Tagp Value

Tagp Value

One

entry

per

arch.

register

Rename table

associated with

architectural

registers,

managed in

decode/dispatch

ROB

Data Movement in Data-in-ROB Design

13

Architectural Register
File

Read operands
during decode

Read
operands at
issue

Functional Units

Read results for
commit

Bypass newer
values at dispatch

Result
Data

Write results at
completion

Write results at
commit

Source
Operands

Write sources
in dispatch

CS152 Administrivia

§ PS 3 out today, due Monday March 18
§ Lab 2 due Monday March 11

– Lab 2 takes time to run, so please get started ASAP
– Don’t wait till Sunday!
– Can share directed simulation results but must do own analysis.

– Look at pinned README on Piazza

§ Lab 3 out Friday, due Monday April 8

§ Exams handed back next week Wednesday
– One week to submit regrade requests (score might go up or down with

regrade requests)

14

CS252

CS252 Administrivia

§ Project proposal presentations March 11 in discussion
section

15

Unified Physical Register File
(MIPS R10K, Alpha 21264, Intel Pentium 4 & Sandy/Ivy Bridge)

§ Rename all architectural registers into a single physical register file
during decode, no register values read

§ Functional units read and write from single unified register file
holding committed and temporary registers in execute

§ Commit only updates mapping of architectural register to physical
register, no data movement

16

Unified Physical
Register File

Read operands at issue

Functional Units

Write results at completion

Committed
Register
Mapping

Decode Stage
Register
Mapping

Lifetime of Physical Registers

17

ld x1, (x3)
addi x3, x1, #4
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x11)

ld P1, (Px)
addi P2, P1, #4
sub P3, Py, Pz
add P4, P2, P3
ld P5, (P1)
add P6, P5, P4
sd P6, (P1)
ld P7, (Pw)

Rename

When can we reuse a physical register?
When next writer of same architectural register commits

• Physical regfile holds committed and speculative values
• Physical registers decoupled from ROB entries (no data in ROB)

Physical Register Management

18

op p1 PR1 p2 PR2exuse Rd PRdLPRd

<x6>P5
<x7>P6
<x3>P7

P0

Pn

P1
P2
P3
P4

x5
P5x6
P6x7

x0
P8x1

x2
P7x3

x4

ROB

Rename
Table

Physical Regs Free List

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

p
p
p

P0
P1
P3
P2
P4

(LPRd requires
third read port
on Rename
Table for each
instruction)

<x1>P8 p

Physical Register Management

19

op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6>P5
<x7>P6
<x3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<x1>P8 p

x ld p P7 x1 P0

x5
P5x6
P6x7

x0
P8x1

x2
P7x3

x4

Rename
Table

P0

P8

Physical Register Management

20

op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6>P5
<x7>P6
<x3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1>P8 p

x ld p P7 x1 P0

x5
P5x6
P6x7

x0
P8x1

x2
P7x3

x4

Rename
Table

P0

P8
P7

P1

x addi P0 x3 P1

Physical Register Management

21

op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6>P5
<x7>P6
<x3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1>P8 p

x ld p P7 x1 P0

x5
P5x6
P6x7

x0
P8x1

x2
P7x3

x4

Rename
Table

P0

P8
P7

P1

x addi P0 x3 P1
P5

P3

x sub p P6 p P5 x6 P3

Physical Register Management

22

op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6>P5
<x7>P6
<x3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<x1>P8 p

x ld p P7 x1 P0

x5
P5x6
P6x7

x0
P8x1

x2
P7x3

x4

Rename
Table

P0

P8
P7

P1

x addi P0 x3 P1
P5

P3

x sub p P6 p P5 x6 P3
P1

P2

x add P1 P3 x3 P2

Physical Register Management

23

op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6>P5
<x7>P6
<x3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<x1>P8 p

x ld p P7 x1 P0

x5
P5x6
P6x7

x0
P8x1

x2
P7x3

x4

Rename
Table

P0

P8
P7

P1

x addi P0 x3 P1
P5

P3

x sub p P6 p P5 x6 P3
P1

P2

x add P1 P3 x3 P2
x ld P0 x6 P4P3

P4

Physical Register Management

24

op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

x ld p P7 x1 P0
x addi P0 x3 P1
x sub p P6 p P5 x6 P3

x ld p P7 x1 P0

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6>P5
<x7>P6
<x3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<x1>P8 p

x5
P5x6
P6x7

x0
P8x1

x2
P7x3

x4

Rename
Table

P0

P8
P7

P1

P5

P3

P1

P2

x add P1 P3 x3 P2
x ld P0 x6 P4P3

P4

Execute &
Commitp

p

p<x1>

P8

x

Physical Register Management

25

op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

x sub p P6 p P5 x6 P3
x addi P0 x3 P1x addi P0 x3 P1

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6>P5
<x7>P6
<x3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

P8

x x ld p P7 x1 P0

x5
P5x6
P6x7

x0
P8x1

x2
P7x3

x4

Rename
Table

P0

P8
P7

P1

P5

P3

P1

P2

x add P1 P3 x3 P2
x ld P0 x6 P4P3

P4

Execute &
Commitp

p

p<x1>

P8

x

p

p<x3>

P7

Repairing Rename at Traps

§ MIPS R10K rename table is repaired by unrenaming
instructions in reverse order using the PRd/LPRd fields

§ Alpha 21264 had similar physical register file scheme, but
kept complete rename table snapshots for each
instruction in ROB (80 snapshots total)

– Flash copy all bits from snapshot to active table in one cycle

26

Reorder Buffer Holds Active Instructions
(Decoded but not Committed)

27

(Older instructions)

(Newer instructions)

Cycle t

…
ld x1, (x3)
add x3, x1, x2
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x1)
…

Commit

Fetch

Cycle t + 1

Execute

…
ld x1, (x3)
add x3, x1, x2
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x1)
…

ROB contents

Separate Issue Window from ROB

28

Reorder buffer used to hold
exception information for commit.

The issue window holds only
instructions that have been decoded
and renamed but not issued into
execution. Has register tags and
presence bits, and pointer to ROB
entry.

op p1 PR1 p2 PR2 PRduse ex ROB#

ROB is usually several times larger than issue window – why?

Rd LPRd PC Except?Oldest

Free

Done?

Superscalar Register Renaming
§ During decode, instructions allocated new physical destination register
§ Source operands renamed to physical register with newest value
§ Execution unit only sees physical register numbers

29

Rename Table

Op Src1 Src2Dest Op Src1 Src2Dest

Register
Free List

Op PSrc1 PSrc2PDestOp PSrc1 PSrc2PDest

Update
Mapping

Does this work?

Inst 1 Inst 2

Read Addresses

Read DataW
rit

e
Po

rt
s

Superscalar Register Renaming

30

Rename Table

Op Src1 Src2Dest Op Src1 Src2Dest

Register
Free List

Op PSrc1 PSrc2PDestOp PSrc1 PSrc2PDest

Update
Mapping

Inst 1 Inst 2

Read Addresses

Read DataW
rit

e
Po

rt
s =?=?

Must check for
RAW hazards
between
instructions issuing
in same cycle. Can
be done in parallel
with rename
lookup.

MIPS R10K renames 4 serially-RAW-dependent insts/cycle

Acknowledgements

§ This course is partly inspired by previous MIT 6.823 and
Berkeley CS252 computer architecture courses created by
my collaborators and colleagues:

– Arvind (MIT)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)

31

