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Last Time in Lecture 10

§ Pipelining is complicated by multiple and/or variable 
latency functional units

§ Out-of-order and/or pipelined execution requires tracking 
of dependencies (RAW, WAR, WAW)

§ OoO issue limited by WAR and WAW hazards caused by 
reuse of architectural register names, removed by register 
renaming

§ OoO issue and register renaming invented in mid-1960s 
but disappeared in practice until 1990s, as simpler 
architecture approaches (pipelining, caches) could more 
easily take advantage of technology scaling

§ Also, two important problems had to be solved:
– Control hazards

– Precise traps and interrupts
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Recap: In-Order Commit for Precise Traps

§ In-order instruction fetch and decode, and dispatch to 
reservation stations inside reorder buffer

§ Instructions issue from reservation stations out-of-order
§ Out-of-order completion, values stored in temporary 

buffers
§ Commit is in-order, checks for traps, and if none updates 

architectural state 3
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Execute

CommitReorder Buffer
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Kill

Kill Kill
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Recap: Separating Completion from Commit

§ Re-order buffer holds register results from 
completion until commit

– Entries allocated in program order during decode
– Buffers completed values and exception state until in-order 

commit point
– Completed values can be used by dependents before committed 

(bypassing)
– Each entry holds program counter, instruction type, destination 

register specifier and value if any, and exception status (info 
often compressed to save hardware)

§ Memory reordering needs special data structures
– Speculative store address and data buffers
– Speculative load address and data buffers
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Recap: Phases of Instruction Execution
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Fetch: Instruction bits retrieved from 
instruction cache.I-cache

Fetch Buffer

Issue Buffer

Functional Units

Architectural
State

Execute: Instructions and operands issued to 
functional units. When execution completes, 
all results and exception flags are available.

Decode: Instructions dispatched to 
appropriate issue buffer

Result Buffer
Commit: Instruction irrevocably updates 
architectural state (aka “graduation”), or 
takes precise trap/interrupt.

PC

Commit

Decode/Rename



In-Order versus Out-of-Order Phases

§ Instruction fetch/decode/rename always in-order
– Need to parse ISA sequentially to get correct semantics
– CS252:Proposals for speculative OoO instruction fetch, e.g., 

Multiscalar.  Predict control flow and data dependencies across 
sequential program segments fetched/decoded/executed in 
parallel, fixup if prediction wrong

§ Dispatch (place instruction into machine buffers 
to wait for issue) also always in-order

– Some use “Dispatch” to mean “Issue”, but not in these lectures
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In-Order Versus Out-of-Order Issue

§ In-order (InO) issue:
– Issue stalls on RAW dependencies or structural 

hazards, or possibly WAR/WAW hazards
– Instruction cannot issue to execution units unless all 

preceding instructions have issued to execution units

§Out-of-order (OoO) issue:
– Instructions dispatched in program order to 

reservation stations (or other forms of instruction 
buffer) to wait for operands to arrive, or other hazards 
to clear

– While earlier instructions wait in issue buffers, 
following instructions can be dispatched and issued 
out-of-order
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In-Order versus Out-of-Order Completion

§ All but simplest machines have out-of-order 
completion, due to different latencies of 
functional units and desire to bypass values as 
soon as available

§ Classic RISC 5-stage integer pipeline just barely 
has in-order completion

– Load takes two cycles, but following one-cycle integer op 
completes at same time, not earlier

– Adding pipelined FPU immediately brings OoO completion
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In-Order versus Out-of-Order Commit

§ In-order commit supports precise traps, standard 
today

– CS252: Some proposals to reduce the cost of in-order commit by 
retiring some instructions early to compact reorder buffer, but this 
is just an optimized in-order commit

§ Out-of-order commit was effectively what early 
OoO machines implemented (imprecise traps) as 
completion irrevocably changed machine state

– i.e., complete == commit in these machines
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OoO Design Choices

§Where are reservation stations?
– Part of reorder buffer, or in separate issue window?
– Distributed by functional units, or centralized?

§How is register renaming performed?
– Tags and data held in reservation stations, with 

separate architectural register file
– Tags only in reservation stations, data held in unified 

physical register file
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“Data-in-ROB” Design
(HP PA8000, Pentium Pro, Core2Duo, Nehalem)

§ Managed as circular buffer in program order, new instructions 
dispatched to free slots, oldest instruction committed/reclaimed 
when done (“p” bit set on result)

§ Tag is given by index in ROB (Free pointer value)
§ In dispatch, non-busy source operands read from architectural 

register file and copied to Src1 and Src2 with presence bit “p” set.  
Busy operands copy tag of producer and clear “p” bit.

§ Set valid bit “v” on dispatch, set issued bit “i” on issue
§ On completion, search source tags, set “p” bit and copy data into src

on tag match.  Write result and exception flags to ROB.
§ On commit, check exception status, and copy result into architectural 

register file if no trap.
§ On trap, flush machine and ROB, set free=oldest, jump to handler

Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode

Oldest

Free
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Managing Rename for Data-in-ROB

§ If “p” bit set, then use value in architectural register file

§ Else, tag field indicates instruction that will/has produced value

§ For dispatch, read source operands <p,tag,value> from arch. regfile, 

then also read <p,result> from producing instruction in ROB at tag 

index, bypassing as needed. Copy operands to ROB.

§ Write destination arch. register entry with  <0,Free,_>, to assign tag to 

ROB index of this instruction

§ On commit, update arch. regfile with <1, _, Result>

§ On trap, reset table (All p=1)
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ROB

Data Movement in Data-in-ROB Design
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Architectural Register 
File

Read operands 
during decode

Read 
operands at 
issue

Functional Units

Read results for 
commit

Bypass newer 
values at dispatch

Result 
Data

Write results at 
completion

Write results at 
commit

Source 
Operands

Write sources 
in dispatch



CS152 Administrivia

§ PS 3 out today, due Monday March 18
§ Lab 2 due Monday March 11

– Lab 2 takes time to run, so please get started ASAP 
– Don’t wait till Sunday!
– Can share directed simulation results but must do own analysis.

– Look at pinned README on Piazza

§ Lab 3 out Friday, due Monday April 8

§ Exams handed back next week Wednesday
– One week to submit regrade requests (score might go up or down with 

regrade requests)
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CS252

CS252 Administrivia

§ Project proposal presentations March 11 in discussion 
section
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Unified Physical Register File
(MIPS R10K, Alpha 21264, Intel Pentium 4 & Sandy/Ivy Bridge)

§ Rename all architectural registers into a single physical register file 
during decode, no register values read

§ Functional units read and write from single unified register file 
holding committed and temporary registers in execute

§ Commit only updates mapping of architectural register to physical 
register, no data movement
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Unified Physical 
Register File

Read operands at issue

Functional Units

Write results at completion
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Register 
Mapping

Decode Stage 
Register 
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Lifetime of Physical Registers
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ld x1, (x3)
addi x3, x1, #4
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x11)

ld P1, (Px)
addi P2, P1, #4
sub P3, Py, Pz
add P4, P2, P3
ld P5, (P1)
add P6, P5, P4
sd P6, (P1)
ld P7, (Pw)

Rename

When can we reuse a physical register?
When next writer of same architectural register commits

• Physical regfile holds committed and speculative values
• Physical registers decoupled from ROB entries (no data in ROB)



Physical Register Management
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op p1 PR1 p2 PR2exuse Rd PRdLPRd

<x6>P5
<x7>P6
<x3>P7

P0

Pn

P1
P2
P3
P4

x5
P5x6
P6x7

x0
P8x1

x2
P7x3

x4

ROB

Rename 
Table

Physical Regs Free List

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

p
p
p

P0
P1
P3
P2
P4

(LPRd requires 
third read port 
on Rename 
Table for each 
instruction)

<x1>P8 p



Physical Register Management
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op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6>P5
<x7>P6
<x3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<x1>P8 p

x ld     p P7                      x1               P0

x5
P5x6
P6x7

x0
P8x1

x2
P7x3

x4

Rename 
Table

P0

P8



Physical Register Management
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op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6>P5
<x7>P6
<x3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1>P8 p

x ld     p P7                      x1               P0

x5
P5x6
P6x7

x0
P8x1

x2
P7x3

x4

Rename 
Table

P0

P8
P7

P1

x addi P0                      x3               P1



Physical Register Management
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op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6>P5
<x7>P6
<x3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1>P8 p

x ld     p P7                      x1               P0

x5
P5x6
P6x7

x0
P8x1

x2
P7x3

x4

Rename 
Table

P0

P8
P7

P1

x addi P0                      x3               P1
P5

P3

x sub   p P6     p P5       x6               P3



Physical Register Management
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op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6>P5
<x7>P6
<x3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<x1>P8 p

x ld     p P7                     x1                P0

x5
P5x6
P6x7

x0
P8x1

x2
P7x3

x4

Rename 
Table

P0

P8
P7

P1

x addi P0                     x3                P1
P5

P3

x sub   p P6    p P5      x6                P3
P1

P2

x add         P1            P3      x3               P2



Physical Register Management
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op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6>P5
<x7>P6
<x3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<x1>P8 p

x ld     p P7                      x1                P0

x5
P5x6
P6x7

x0
P8x1

x2
P7x3

x4

Rename 
Table

P0

P8
P7

P1

x addi P0                      x3                P1
P5

P3

x sub   p P6     p P5      x6                P3
P1

P2

x add        P1            P3      x3                P2
x ld           P0                     x6                P4P3

P4



Physical Register Management
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op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

x ld     p P7                      x1                P0
x addi P0                      x3                P1
x sub   p P6     p P5      x6                P3

x ld     p P7                      x1                P0

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6>P5
<x7>P6
<x3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<x1>P8 p

x5
P5x6
P6x7

x0
P8x1

x2
P7x3

x4

Rename 
Table

P0

P8
P7

P1

P5

P3

P1

P2

x add         P1            P3      x3                P2
x ld           P0                     x6                P4P3

P4

Execute & 
Commitp

p

p<x1>

P8

x



Physical Register Management
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op p1 PR1 p2 PR2exuse Rd PRdLPRd
ROB

x sub   p P6     p P5       x6                P3
x addi P0                      x3                P1x addi P0                      x3                P1

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6>P5
<x7>P6
<x3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

P8

x x ld    p P7                      x1                P0

x5
P5x6
P6x7

x0
P8x1

x2
P7x3

x4

Rename 
Table

P0

P8
P7

P1

P5

P3

P1

P2

x add         P1            P3      x3                P2
x ld           P0                       x6                P4P3

P4

Execute & 
Commitp

p

p<x1>

P8

x

p

p<x3>

P7



Repairing Rename at Traps

§ MIPS R10K rename table is repaired by unrenaming
instructions in reverse order using the PRd/LPRd fields

§ Alpha 21264 had similar physical register file scheme, but 
kept complete rename table snapshots for each 
instruction in ROB (80 snapshots total)

– Flash copy all bits from snapshot to active table in one cycle
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Reorder Buffer Holds Active Instructions
(Decoded but not Committed)
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(Older instructions)

(Newer instructions)

Cycle t

…
ld x1, (x3)
add x3, x1, x2
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x1)
…

Commit

Fetch

Cycle t + 1

Execute

…
ld x1, (x3)
add x3, x1, x2
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x1)
…

ROB contents



Separate Issue Window from ROB
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Reorder buffer used to hold 
exception information for commit.

The issue window holds only 
instructions that have been decoded 
and renamed but not issued into 
execution.  Has register tags and 
presence bits, and pointer to ROB 
entry.

op p1 PR1 p2 PR2 PRduse ex ROB#

ROB is usually several times larger than issue window – why? 

Rd LPRd PC Except?Oldest

Free

Done?



Superscalar Register Renaming
§ During decode, instructions allocated new physical destination register
§ Source operands renamed to physical register with newest value
§ Execution unit only sees physical register numbers
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Rename Table

Op Src1 Src2Dest Op Src1 Src2Dest

Register 
Free List

Op PSrc1 PSrc2PDestOp PSrc1 PSrc2PDest

Update
Mapping

Does this work?

Inst 1 Inst 2

Read Addresses

Read DataW
rit

e 
Po

rt
s



Superscalar Register Renaming
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Rename Table

Op Src1 Src2Dest Op Src1 Src2Dest

Register 
Free List

Op PSrc1 PSrc2PDestOp PSrc1 PSrc2PDest

Update
Mapping

Inst 1 Inst 2

Read Addresses

Read DataW
rit

e 
Po

rt
s =?=?

Must check for 
RAW hazards 
between 
instructions issuing 
in same cycle.  Can 
be done in parallel 
with rename 
lookup.

MIPS R10K renames 4 serially-RAW-dependent insts/cycle
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