
CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 12 – Branch Prediction and
Advanced Out-of-Order Superscalars

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

Last Time in Lecture 11

§ Phases of instruction execution:
– Fetch/decode/rename/dispatch/issue/execute/complete/commit

§ Data-in-ROB design versus unified physical register design
§ Superscalar register renaming

2

Control-Flow Penalty

3

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Branch
executed

Next fetch
started

Modern processors may
have > 10 pipeline stages
between next PC calculation
and branch resolution !

How much work is lost if
pipeline doesn’t follow
correct instruction flow?

~ Loop length x pipeline
width + buffers

Reducing Control-Flow Penalty

§ Software solutions
– Eliminate branches - loop unrolling

• Increases the run length
– Reduce resolution time - instruction scheduling

• Compute the branch condition as early as possible (of limited
value because branches often in critical path through code)

§ Hardware solutions
– Find something else to do (delay slots)

• Replaces pipeline bubbles with useful work (requires
software cooperation) – quickly see diminishing returns

– Speculate, i.e., branch prediction
• Speculative execution of instructions beyond the branch
• Many advances in accuracy, widely used

4

Branch Prediction

5

Motivation:
Branch penalties limit performance of deeply pipelined
processors
Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:
Prediction structures:

• Branch history tables, branch target buffers, etc.

Mispredict recovery mechanisms:
• Keep result computation separate from commit
• Kill instructions following branch in pipeline
• Restore state to that following branch

Importance of Branch Prediction

§ Consider 4-way superscalar with 8 pipeline stages from
fetch to dispatch, and 80-entry ROB, and 3 cycles from
issue to branch resolution

§ On a mispredict, could throw away 8*4+(80-1)=111
instructions

§ Improving from 90% to 95% prediction accuracy, removes
50% of branch mispredicts

– If 1/6 instructions are branches, then move from 60 instructions
between mispredicts, to 120 instructions between mispredicts

6

Static Branch Prediction

7

Overall probability a branch is taken is ~60-70% but:

ISA can attach preferred direction semantics to branches, e.g.,
Motorola MC88110

bne0 (preferred taken) beq0 (not taken)

ISA can allow arbitrary choice of statically predicted direction,
e.g., HP PA-RISC, Intel IA-64

typically reported as ~80% accurate

backward
90%

forward
50%

Dynamic Branch Prediction
learning based on past behavior

§Temporal correlation
– The way a branch resolves may be a good predictor of

the way it will resolve at the next execution

§Spatial correlation
– Several branches may resolve in a highly correlated

manner (a preferred path of execution)

8

One-Bit Branch History Predictor

§ For each branch, remember last way branch went
§ Has problem with loop-closing backward

branches, as two mispredicts occur on every loop
execution

1. first iteration predicts loop backwards branch not-taken (loop
was exited last time)

2. last iteration predicts loop backwards branch taken (loop
continued last time)

9

Branch Prediction Bits

10

• Assume 2 BP bits per instruction
• Change the prediction after two consecutive mistakes!

¬take
wrongtaken

¬ taken

taken

taken

taken
¬take
right

take
right

take
wrong

¬ taken

¬ taken¬ taken

BP state:
(predict take/¬take) x (last prediction right/wrong)

Branch History Table (BHT)

11

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

0 0Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset
Instruction

k
BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

Exploiting Spatial Correlation
Yeh and Patt, 1992

12

History register, H, records the direction of the
last N branches executed by the processor

if (x[i] < 7) then
y += 1;

if (x[i] < 5) then
c -= 4;

If first condition false, second condition also false

Two-Level Branch Predictor

13

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

0 0

kFetch PC

Shift in Taken/¬Taken
results of each branch

2-bit global branch history
shift register

Taken/¬Taken?

Speculating Both Directions?

§ An alternative to branch prediction is to execute
both directions of a branch speculatively

– resource requirement is proportional to the number of
concurrent speculative executions

– only half the resources engage in useful work when both
directions of a branch are executed speculatively

– branch prediction takes less resources than speculative
execution of both paths

§ With accurate branch prediction, it is more cost
effective to dedicate all resources to the
predicted direction!

14

Limitations of BHTs

15

Only predicts branch direction. Therefore, cannot redirect fetch stream until
after branch target is determined.

UltraSPARC-III fetch pipeline

Correctly predicted
taken branch

penalty

Jump Register
penalty

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

Branch Target Buffer (BTB)

16

• Keep both the branch PC and target PC in the BTB
• PC+4 is fetched if match fails
• Only taken branches and jumps held in BTB
• Next PC determined before branch fetched and decoded

2k-entry direct-mapped BTB
(can also be associative)

I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

Combining BTB and BHT
§ BTB entries are considerably more expensive than BHT,

but can redirect fetches at earlier stage in pipeline and can
accelerate indirect branches (JR)

§ BHT can hold many more entries and is more accurate

17

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

BTB

BHTBHT in later
pipeline stage
corrects when
BTB misses a
predicted taken
branch

BTB/BHT only updated after branch resolves in E stage

Uses of Jump Register (JR)

§ Switch statements (jump to address of matching
case)

§ Dynamic function call (jump to run-time function
address)

§ Subroutine returns (jump to return address)

18
How well does BTB work for each of these cases?

BTB works well if same case used repeatedly

BTB works well if same function usually called, (e.g., in
C++ programming, when objects have same type in virtual
function call)

BTB works well if usually return to the same place
Þ Often one function called from many distinct call sites!

Subroutine Return Stack

19

Small structure to accelerate JR for subroutine returns, typically
much more accurate than BTBs.

&fb()
&fc()

Push call address when
function call executed

Pop return address when
subroutine return decoded

fa() { fb(); }
fb() { fc(); }
fc() { fd(); }

&fd() k entries
(typically k=8-16)

CS252

Return Stack in Pipeline

§ How to use return stack (RS) in deep fetch pipeline?
§ Only know if subroutine call/return at decode

20

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

RSRS Push/Pop
after decode
gives large
bubble in fetch
stream.

Return Stack prediction checked

CS252

Return Stack in Pipeline

§ Can remember whether PC is subroutine
call/return using BTB-like structure

§ Instead of target-PC, just store push/pop bit

21

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

RS

Push/Pop before
instructions decoded!

Return Stack prediction checked

In-Order vs. Out-of-Order Branch
Prediction

22

§ Speculative fetch but not speculative
execution - branch resolves before
later instructions complete

§ Completed values held in bypass
network until commit

§ Speculative execution, with branches
resolved after later instructions complete

§ Completed values held in rename
registers in ROB or unified physical
register file until commit

Fetch

Decode

Execute

Commit

In-Order Issue Out-of-Order Issue

Fetch

Decode

Execute

Commit

ROB

Br. Pred.

Resolve

Br. Pred.

Resolve

• Both styles of machine can use same branch predictors in front-end fetch pipeline,
and both can execute multiple instructions per cycle

• Common to have 10-30 pipeline stages in either style of design

In-Order

In-Order

In-Order

Out-of-Order

InO vs. OoO Mispredict Recovery

§ In-order execution?
– Design so no instruction issued after branch can write-back

before branch resolves
– Kill all instructions in pipeline behind mispredicted branch

§ Out-of-order execution?
– Multiple instructions following branch in program order can

complete before branch resolves
– A simple solution would be to handle like precise traps

• Problem?

23

Branch Misprediction in Pipeline

24

§ Can have multiple unresolved branches in ROB
§ Can resolve branches out-of-order by killing all the instructions in

ROB that follow a mispredicted branch
§ MIPS R10K uses four mask bits to tag instructions that are

dependent on up to four speculative branches
§ Mask bits cleared as branch resolves, and reused for next branch

Fetch Decode

Execute

CommitReorder Buffer

Kill

Kill Kill

PC

Inject correct PC

Branch
Prediction

Branch
Resolution

Complete

Rename Table Recovery

§ Have to quickly recover rename table on branch
mispredicts

§ MIPS R10K only has four snapshots for each of four
outstanding speculative branches

§ Alpha 21264 has 80 snapshots, one per ROB instruction

25

CS152 Administrivia

§ Lab 2 extension, due Friday March 15
§ PS 3 due Monday March 18

26

CS252

CS252 Administrivia

§ Readings next week on OoO superscalar microprocessors

27

Improving Instruction Fetch

§ Performance of speculative out-of-order machines often
limited by instruction fetch bandwidth

– speculative execution can fetch 2-3x more instructions than are
committed

– mispredict penalties dominated by time to refill instruction window
– taken branches are particularly troublesome

28

CS252

Increasing Taken Branch Bandwidth
(Alpha 21264 I-Cache)

§ Fold 2-way tags and BTB into predicted next block

§ Take tag checks, inst. decode, branch predict out of loop

§ Raw RAM speed on critical loop (1 cycle at ~1 GHz)

§ 2-bit hysteresis counter per block prevents overtraining

Cached

Instructions

Line

Predict

Way

Predict

Tag

Way

0

Tag

Way

1

=? =?

fast fetch path

PC Generation

PC

Branch Prediction

Instruction Decode

Validity Checks

4 insts

Hit/Miss/Way

29

CS252

Tournament Branch Predictor
(Alpha 21264)

§ Choice predictor learns whether best to use local or global
branch history in predicting next branch

§ Global history is speculatively updated but restored on
mispredict

§ Claim 90-100% success on range of applications

Local
history table
(1,024x10b)

PC

Local
prediction
(1,024x3b)

Global Prediction
(4,096x2b)

Choice Prediction
(4,096x2b)

Global History (12b)Prediction

30

Taken Branch Limit

§ Integer codes have a taken branch every 6-9 instructions
§ To avoid fetch bottleneck, must execute multiple taken

branches per cycle when increasing performance
§ This implies:

– predicting multiple branches per cycle
– fetching multiple non-contiguous blocks per cycle

31

CS252

Branch Address Cache
(Yeh, Marr, Patt)

PC
k

Entry PC

=

match

Valid

valid

predicted

target#1

target #1
len

len#1

predicted

target#2

target #2

Extend BTB to return multiple branch predictions per cycle

32

CS252

Fetching Multiple Basic Blocks

§ Requires either
– multiported cache: expensive
– interleaving: bank conflicts will occur

§ Merging multiple blocks to feed to decoders adds
latency, increasing mispredict penalty and
reducing branch throughput

33

CS252

Trace Cache

§ Key Idea: Pack multiple non-contiguous basic blocks into
one contiguous trace cache line

BR BR BR

• Single fetch brings in multiple basic blocks

• Trace cache indexed by start address and next n branch
predictions

• Used in Intel Pentium-4 processor to hold decoded uops

BRBRBR

34

Load-Store Queue Design

§ After control hazards, data hazards through memory are
probably next most important bottleneck to superscalar
performance

§ Modern superscalars use very sophisticated load-store
reordering techniques to reduce effective memory latency
by allowing loads to be speculatively issued

35

Speculative Store Buffer
§ Just like register updates, stores should

not modify the memory until after the
instruction is committed. A speculative
store buffer is a structure introduced to
hold speculative store data.

§ During decode, store buffer slot
allocated in program order

§ Stores split into “store address” and
“store data” micro-operations

§ “Store address” execution writes tag
§ “Store data” execution writes data
§ Store commits when oldest instruction

and both address and data available:
– clear speculative bit and eventually

move data to cache
§ On store abort:

– clear valid bit
36

DataTags

Store Commit
Path

Speculative
Store Buffer

L1 Data Cache

Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV

Store
Address

Store
Data

Load bypass from speculative store buffer

§ If data in both store buffer and cache, which should we
use?

Speculative store buffer

§ If same address in store buffer twice, which should we
use?

Youngest store older than load
37

Data

Load Address

Tags

Speculative
Store Buffer L1 Data Cache

Load Data

Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV

Memory Dependencies

sd x1, (x2)
ld x3, (x4)

§ When can we execute the load?

38

In-Order Memory Queue

§ Execute all loads and stores in program order

=> Load and store cannot leave ROB for execution until all
previous loads and stores have completed execution

§ Can still execute loads and stores speculatively, and out-
of-order with respect to other instructions

§ Need a structure to handle memory ordering…

39

Conservative O-o-O Load Execution

sd x1, (x2)
ld x3, (x4)

§ Can execute load before store, if addresses known and x4
!= x2

§ Each load address compared with addresses of all
previous uncommitted stores

– can use partial conservative check i.e., bottom 12 bits of address, to save
hardware

§ Don’t execute load if any previous store address not
known

§ (MIPS R10K, 16-entry address queue)

40

Address Speculation

sd x1, (x2)
ld x3, (x4)

§ Guess that x4 != x2
§ Execute load before store address known
§ Need to hold all completed but uncommitted load/store

addresses in program order
§ If subsequently find x4==x2, squash load and all following

instructions

§ => Large penalty for inaccurate address speculation

41

CS252

Memory Dependence Prediction
(Alpha 21264)

sd x1, (x2)
ld x3, (x4)

§ Guess that x4 != x2 and execute load before store

§ If later find x4==x2, squash load and all following
instructions, but mark load instruction as store-wait

§ Subsequent executions of the same load instruction will
wait for all previous stores to complete

§ Periodically clear store-wait bits

42

Acknowledgements

§ This course is partly inspired by previous MIT 6.823 and
Berkeley CS252 computer architecture courses created by
my collaborators and colleagues:

– Arvind (MIT)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)

43

