
CS	152	Computer	Architecture	and	Engineering
CS252	Graduate	Computer	Architecture

Lecture	13	–VLIW

Krste	Asanovic
Electrical	Engineering	and	Computer	Sciences

University	of	California	at	Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

Last	Time	in	Lecture	12

§ Branch	prediction
– temporal,	history	of	a	single	branch
– spatial,	based	on	path	through	multiple	branches

§ Branch	History	Table	(BHT)	vs.	Branch	History	Buffer	(BTB)
– tradeoff	in	capacity	versus	latency

§ Return-Address	Stack	(RAS)
– specialized	structure	to	predict	subroutine	return	addresses

§ Fetching	more	than	one	basic	block	per	cycle
– predicting	multiple	branches
– trace	cache

2

Superscalar	Control	Logic	Scaling

§ Each	issued	instruction	must	somehow	check	against	W*L	
instructions,	i.e.,	growth	in	hardware	µW*(W*L)

§ For	in-order	machines,	L	is	related	to	pipeline	latencies	and	check	is	
done	during	issue	(interlocks	or	scoreboard)

§ For	out-of-order	machines,	L	also	includes	time	spent	in	instruction	
buffers	(instruction	window	or	ROB),	and	check	is	done	by	
broadcasting	tags	to	waiting	instructions	at	write	back	(completion)

§ As	W	increases,	larger	instruction	window	is	needed	to	find	enough	
parallelism	to	keep	machine	busy	=>	greater	L

=>	Out-of-order	control	logic	grows	faster	than	W2 (~W3)
3

Lifetime	L

Issue	Group

Previously	
Issued	

Instructions

Issue	Width	W

Out-of-Order	Control	Complexity:
MIPS	R10000

4

Control	
Logic

[SGI/MIPS	Technologies	
Inc.,	1995]

Sequential	ISA	Bottleneck

5

Check	instruction	
dependencies

Superscalar	processor

a = foo(b);

for (i=0, i<

Sequential	
source	code

Superscalar	compiler

Find	independent	
operations

Schedule	
operations

Sequential	
machine	code

Schedule	
execution

VLIW:	Very	Long	Instruction	Word

§Multiple	operations	packed	into	one	instruction
§ Each	operation	slot	is	for	a	fixed	function
§ Constant	operation	latencies	are	specified
§ Architecture	requires	guarantee	of:

– Parallelism	within	an	instruction	=>	no	cross-operation	RAW	
check

– No	data	use	before	data	ready	=>	no	data	interlocks
6

Two	Integer	Units,
Single-Cycle	Latency

Two	Load/Store	Units,
Three-Cycle	Latency Two	Floating-Point	Units,

Four-Cycle	Latency

Int	Op	2 Mem	Op	1 Mem	Op	2 FP	Op	1 FP	Op	2Int Op	1

Early	VLIW	Machines

§ FPS	AP120B	(1976)
– scientific	attached	array	processor
– first	commercial	wide	instruction	machine
– hand-coded	vector	math	libraries	using	software	pipelining	and	
loop	unrolling

§Multiflow Trace	(1987)
– commercialization	of	ideas	from	Fisher’s	Yale	group	including	
“trace	scheduling”

– available	in	configurations	with	7,	14,	or	28	
operations/instruction

– 28	operations	packed	into	a	1024-bit	instruction	word

§ Cydrome Cydra-5	(1987)
– 7	operations	encoded	in	256-bit	instruction	word
– rotating	register	file

7

VLIW	Compiler	Responsibilities

§Schedule	operations	to	maximize	parallel	
execution

§Guarantees	intra-instruction	parallelism

§Schedule	to	avoid	data	hazards	(no	
interlocks)
– Typically	separates	operations	with	explicit	NOPs

8

Loop	Execution

9

How	many	FP	ops/cycle?

for (i=0; i<N; i++)

B[i] = A[i] + C;
Int1 Int 2 M1 M2 FP+ FPx

loop: fldadd x1

fadd

fsdadd x2 bne

1 fadd / 8 cycles = 0.125

loop: fld f1, 0(x1)

add x1, 8

fadd f2, f0, f1

fsd f2, 0(x2)

add x2, 8

bne x1, x3,
loop

Compile

Schedule

Loop	Unrolling

10

for (i=0; i<N; i++)

B[i] = A[i] + C;

for (i=0; i<N; i+=4)

{

B[i] = A[i] + C;

B[i+1] = A[i+1] + C;

B[i+2] = A[i+2] + C;

B[i+3] = A[i+3] + C;

}

Unroll inner loop to perform 4
iterations at once

Need to handle values of N that are not multiples
of unrolling factor with final cleanup loop

Scheduling	Loop	Unrolled	Code

11

loop: fld f1, 0(x1)
fld f2, 8(x1)
fld f3, 16(x1)
fld f4, 24(x1)
add x1, 32
fadd f5, f0, f1
fadd f6, f0, f2
fadd f7, f0, f3
fadd f8, f0, f4
fsd f5, 0(x2)
fsd f6, 8(x2)
fsd f7, 16(x2)
fsd f8, 24(x2)
add x2, 32
bne x1, x3, loop

Schedule

Int1 Int 2 M1 M2 FP+ FPx

loop:

Unroll 4 ways

fld f1
fld f2
fld f3
fld f4add x1 fadd f5

fadd f6
fadd f7
fadd f8

fsd f5
fsd f6
fsd f7
fsd f8add x2 bne

How many FLOPS/cycle?
4 fadds / 11 cycles = 0.36

Software	Pipelining

12

How	many	FLOPS/cycle?

loop: fld f1, 0(x1)
fld f2, 8(x1)
fld f3, 16(x1)
fld f4, 24(x1)
add x1, 32
fadd f5, f0, f1
fadd f6, f0, f2
fadd f7, f0, f3
fadd f8, f0, f4
fsd f5, 0(x2)
fsd f6, 8(x2)
fsd f7, 16(x2)
add x2, 32
fsd f8, -8(x2)
bne x1, x3, loop

Int1 Int 2 M1 M2 FP+ FPxUnroll 4 ways first
fld f1
fld f2
fld f3
fld f4

fadd f5
fadd f6
fadd f7
fadd f8

fsd f5
fsd f6
fsd f7
fsd f8

add x1

add x2
bne

fld f1
fld f2
fld f3
fld f4

fadd f5
fadd f6
fadd f7
fadd f8

fsd f5
fsd f6
fsd f7
fsd f8

add x1

add x2
bne

fld f1
fld f2
fld f3
fld f4

fadd f5
fadd f6
fadd f7
fadd f8

fsd f5

add x1

loop:iterate

prolog

epilog

4 fadds / 4 cycles = 1

Software	Pipelining	vs.	Loop	Unrolling

13

time

performance

time

performance

Loop Unrolled

Software Pipelined

Startup overhead

Wind-down overhead

Loop Iteration

Loop Iteration

Software pipelining pays startup/wind-down
costs only once per loop, not once per iteration

CS152	Administrivia

§ Lab	2	extension,	due	Friday	March	15
§ PS	3	due	Monday	March	18
§ Midterm	grades	will	be	released	today
§ Regrade	requests	will	be	through	Gradescope

– Window	opens	Friday,	3/15/19	at	4pm	(after	section)
– Window	closes	Friday,	3/22/19	at	12pm	(before	section)

14

0

2

4

6

8

10

12

20
.0
0

24
.0
0

28
.0
0

32
.0
0

36
.0
0

40
.0
0

44
.0
0

48
.0
0

52
.0
0

56
.0
0

60
.0
0

64
.0
0

68
.0
0

70
.0
0

Midterm 1 Grades: mean = 41.4, σ = 11.3
CS152	Administrivia

15

CS252

CS252	Administrivia

§ Readings	next	week	on	OoO superscalar	microprocessors

16

What	if	there	are	no	loops?

17

§ Branches	limit	basic	block	size	
in	control-flow	intensive	
irregular	code

§ Difficult	to	find	ILP	in	individual	
basic	blocks

Basic	block

Trace	Scheduling	[Fisher,Ellis]

18

§ Pick	string	of	basic	blocks,	a	trace,	that	
represents	most	frequent	branch	path

§ Use	profiling	feedback or	compiler	
heuristics	to	find	common	branch	paths	

§ Schedule	whole	“trace”	at	once
§ Add	fixup code	to	cope	with	branches	
jumping	out	of	trace

Problems	with	“Classic”	VLIW

§ Object-code	compatibility
– have	to	recompile	all	code	for	every	machine,	even	for	two	machines	in	
same	generation

§ Object	code	size
– instruction	padding	wastes	instruction	memory/cache
– loop	unrolling/software	pipelining	replicates	code

§ Scheduling	variable	latency	memory	operations
– caches	and/or	memory	bank	conflicts	impose	statically	unpredictable	
variability

§ Knowing	branch	probabilities
– Profiling	requires	an	significant	extra	step	in	build	process

§ Scheduling	for	statically	unpredictable	branches
– optimal	schedule	varies	with	branch	path

19

VLIW	Instruction	Encoding

§ Schemes	to	reduce	effect	of	unused	fields
– Compressed	format	in	memory,	expand	on	I-cache	refill

• used	in	Multiflow Trace
• introduces	instruction	addressing	challenge

– Mark	parallel	groups
• used	in	TMS320C6x	DSPs,	Intel	IA-64

– Provide	a	single-op	VLIW	instruction
• Cydra-5	UniOp instructions

20

Group 1 Group 2 Group 3

Intel	Itanium,	EPIC	IA-64

§ EPIC	is	the	style	of	architecture	(cf.	CISC,	RISC)
– Explicitly	Parallel	Instruction	Computing	(really	just	VLIW)

§ IA-64	is	Intel’s	chosen	ISA	(cf.	x86,	MIPS)
– IA-64	=	Intel	Architecture	64-bit
– An	object-code-compatible	VLIW

§ Merced	was	first	Itanium	implementation	(cf.	8086)
– First	customer	shipment	expected	1997	(actually	2001)
– McKinley,	second	implementation	shipped	in	2002
– Recent	version,	Poulson,	eight	cores,	32nm,	announced	2011

21

Eight	Core	Itanium	“Poulson”	[Intel	2011]

22

§ 8	cores
§ 1-cycle	16KB	L1	I&D	caches
§ 9-cycle	512KB	L2	I-cache
§ 8-cycle	256KB	L2	D-cache
§ 32	MB	shared	L3	cache
§ 544mm2 in	32nm	CMOS
§ Over	3	billion	transistors

§ Cores	are	2-way	multithreaded
§ 6	instruction/cycle	fetch

– Two	128-bit	bundles

§ Up	to	12	insts/cycle	execute

IA-64	Instruction	Format

§ Template	bits	describe	grouping	of	these	instructions	with	
others	in	adjacent	bundles

§ Each	group	contains	instructions	that	can	execute	in	
parallel

23

Instruction 2 Instruction 1 Instruction 0 Template

128-bit instruction bundle

group i group i+1 group i+2group i-1

bundle j bundle j+1bundle j+2bundle j-1

IA-64	Registers

§ 128	General	Purpose	64-bit	Integer	Registers
§ 128	General	Purpose	64/80-bit	Floating	Point	Registers
§ 64	1-bit	Predicate	Registers

§ GPRs “rotate”	to	reduce	code	size	for	software	pipelined	
loops
– Rotation	is	a	simple	form	of	register	renaming	allowing	one	instruction	
to	address	different	physical	registers	on	each	iteration

24

CS252

Rotating	Register	Files

25

Problems:	Scheduled	loops	require	lots	of	registers,	
Lots	of	duplicated	code	in	prolog,	epilog

Solution:	Allocate	new	set	of	registers	for	each	loop	iteration

25

CS252

Rotating	Register	File

26

P0
P1
P2
P3
P4
P5
P6
P7

RRB=3

+R1

Rotating	Register	Base	(RRB)	register	points	to	base	of	current	
register	set.		Value	added	on	to	logical	register	specifier to	give	
physical	register	number.		Usually,	split	into	rotating	and	non-
rotating	registers.

26

CS252

Rotating	Register	File
(Previous	Loop	Example)

27

bloopsd f9, ()fadd f5, f4, ...ld f1, ()

Three cycle load latency
encoded as difference of 3

in register specifier
number (f4 - f1 = 3)

Four cycle fadd latency
encoded as difference of 4

in register specifier
number (f9 – f5 = 4)

bloopsd P17, ()fadd P13, P12,ld P9, () RRB=8
bloopsd P16, ()fadd P12, P11,ld P8, () RRB=7
bloopsd P15, ()fadd P11, P10,ld P7, () RRB=6
bloopsd P14, ()fadd P10, P9,ld P6, () RRB=5
bloopsd P13, ()fadd P9, P8,ld P5, () RRB=4
bloopsd P12, ()fadd P8, P7,ld P4, () RRB=3
bloopsd P11, ()fadd P7, P6,ld P3, () RRB=2
bloopsd P10, ()fadd P6, P5,ld P2, () RRB=1

27

IA-64	Predicated	Execution

28

Problem:	Mispredicted branches	limit	ILP
Solution:	Eliminate	hard	to	predict	branches	with	predicated	execution

– Almost	all	IA-64	instructions	can	be	executed	conditionally	under	predicate
– Instruction	becomes	NOP	if	predicate	register	false

Inst 1
Inst 2
br a==b, b2

Inst 3
Inst 4
br b3

Inst 5
Inst 6

Inst 7
Inst 8

b0:

b1:

b2:

b3:

if

else

then

Four basic blocks

Inst 1
Inst 2
p1,p2 <- cmp(a==b)
(p1) Inst 3 || (p2) Inst 5
(p1) Inst 4 || (p2) Inst 6
Inst 7
Inst 8

Predication

One basic block

Mahlke et al, ISCA95: On average
>50% branches removed

Warning:	Complicates	bypassing!

CS252

IA-64	Speculative	Execution

29

Problem: Branches	restrict	compiler	code	motion

Inst 1
Inst 2
br a==b, b2

Load r1
Use r1
Inst 3

Can’t move load above branch
because might cause spurious
exception

Load.s r1
Inst 1
Inst 2
br a==b, b2

Chk.s r1
Use r1
Inst 3

Speculative load
never causes
exception, but sets
“poison” bit on
destination register

Check for exception in
original home block
jumps to fixup code if
exception detected

Particularly useful for scheduling long latency loads early

Solution: Speculative	operations	that	don’t	cause	exceptions

CS252

IA-64	Data	Speculation

30

Problem:	Possible	memory	hazards	limit	code	scheduling

Requires associative hardware in address check table

Inst 1
Inst 2
Store

Load r1
Use r1
Inst 3

Can’t move load above store
because store might be to same
address

Load.a r1
Inst 1
Inst 2
Store

Load.c
Use r1
Inst 3

Data speculative load
adds address to
address check table

Store invalidates any
matching loads in
address check table

Check if load invalid (or
missing), jump to fixup
code if so

Solution:	Hardware	to	check	pointer	hazards

Limits	of	Static	Scheduling

§ Unpredictable	branches
§ Variable	memory	latency	(unpredictable	cache	misses)
§ Code	size	explosion
§ Compiler	complexity
§ Despite	several	attempts,	VLIW	has	failed	in	general-purpose	
computing	arena	(so	far).
– More	complex	VLIW	architectures	are	close	to	in-order	superscalar	in	
complexity,	no	real	advantage	on	large	complex	apps.

§ Successful	in	embedded	DSP	market
– Simpler	VLIWs	with	more	constrained	environment,	friendlier	code.

31

Intel	Kills	Itanium

§ Donald	Knuth	“ …	Itanium	approach	that	was	supposed	to	
be	so	terrific—until	it	turned	out	that	the	wished-for	
compilers	were	basically	impossible	to	write.”

§ “Intel	officially	announced	the	end	of	life	and	product	
discontinuance	of	the	Itanium	CPU	family	on	January	30th,	
2019”,	Wikipedia

32

Acknowledgements

§ This	course	is	partly	inspired	by	previous	MIT	6.823	and	
Berkeley	CS252	computer	architecture	courses	created	by	
my	collaborators	and	colleagues:
– Arvind (MIT)
– Joel	Emer (Intel/MIT)
– James	Hoe	(CMU)
– John	Kubiatowicz (UCB)
– David	Patterson	(UCB)

33

