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Last Time Lecture 13: VLIW

§ In a classic VLIW, compiler is responsible for avoiding all 
hazards -> simple hardware, complex compiler. Later 
VLIWs added more dynamic hardware interlocks

§ Use loop unrolling and software pipelining for loops, trace 
scheduling for more irregular code

§ Static scheduling difficult in presence of unpredictable 
branches and variable latency memory
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Multithreading

§ Difficult to continue to extract instruction-level parallelism 
(ILP) from a single sequential thread of control

§ Many workloads can make use of thread-level parallelism 
(TLP)

– TLP from multiprogramming (run independent 
sequential jobs)

– TLP from multithreaded applications (run one job 
faster using parallel threads)

§ Multithreading uses TLP to improve utilization of a single 
processor
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Multithreading

How can we guarantee no dependencies between 
instructions in a pipeline?

One way is to interleave execution of instructions from 
different program threads on same pipeline
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F D X MW
t0 t1 t2 t3 t4 t5 t6 t7 t8

T1:LD x1,0(x2)
T2:ADD x7,x1,x4
T3:XORI x5,x4,12
T4:SD 0(x7),x5
T1:LD x5,12(x1)

t9

F D X MW
F D X MW

F D X MW
F D X MW

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in a 
thread always 
completes write-back 
before next instruction 
in same thread reads 
register file



CDC 6600 Peripheral Processors
(Cray, 1964)

§ First multithreaded hardware
§ 10 “virtual” I/O processors
§ Fixed interleave on simple pipeline
§ Pipeline has 100ns cycle time
§ Each virtual processor executes one instruction every 1000ns
§ Accumulator-based instruction set to reduce processor state
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Simple Multithreaded Pipeline

§ Have to carry thread select down pipeline to ensure correct state bits 
read/written at each pipe stage

§ Appears to software (including OS) as multiple, albeit slower, CPUs
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Multithreading Costs

§ Each thread requires its own user state
– PC
– GPRs

§ Also, needs its own system state
– Virtual-memory page-table-base register
– Exception-handling registers

§ Other overheads:
– Additional cache/TLB conflicts from competing threads
– (or add larger cache/TLB capacity)
– More OS overhead to schedule more threads (where do all these 

threads come from?)

7



Thread Scheduling Policies
§ Fixed interleave (CDC 6600 PPUs, 1964)

– Each of N threads executes one instruction every N cycles
– If thread not ready to go in its slot, insert pipeline bubble

§ Software-controlled interleave (TI ASC PPUs, 1971)
– OS allocates S pipeline slots amongst N threads
– Hardware performs fixed interleave over S slots, executing whichever 

thread is in that slot

§ Hardware-controlled thread scheduling (HEP, 1982)
– Hardware keeps track of which threads are ready to go
– Picks next thread to execute based on hardware priority scheme
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Denelcor HEP
(Burton Smith, 1982)

First commercial machine to use hardware threading in 
main CPU

– 120 threads per processor
– 10 MHz clock rate
– Up to 8 processors
– precursor to Tera MTA (Multithreaded Architecture)
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CS252

Tera MTA (1990-)
§ Up to 256 processors
§ Up to 128 active threads per processor
§ Processors and memory modules populate a 

sparse 3D torus interconnection fabric
§ Flat, shared main memory

– No data cache
– Sustains one main memory access per cycle per 

processor

§ GaAs logic in prototype, 1KW/processor @ 
260MHz

– Second version CMOS, MTA-2, 50W/processor
– Newer version, XMT, fits into AMD Opteron socket, 

runs at 500MHz
– Newest version, XMT2, has higher memory 

bandwidth and capacity
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MTA Pipeline
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Issue Pool
• Every cycle, one VLIW 
instruction from one active thread 
is launched into pipeline

• Instruction pipeline is 21 cycles 

long

• Memory operations incur ~150 

cycles of latency

Assuming a single thread issues one 

instruction every 21 cycles, and clock rate 

is 260 MHz…

What is single-thread performance?

Effective single-thread issue rate is 

260/21 = 12.4 MIPS



Coarse-Grain Multithreading

§ Tera MTA designed for supercomputing applications with 
large data sets and low locality

– No data cache
– Many parallel threads needed to hide large memory latency

§ Other applications are more cache friendly
– Few pipeline bubbles if cache mostly has hits
– Just add a few threads to hide occasional cache miss latencies
– Swap threads on cache misses
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MIT Alewife (1990)
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§Modified SPARC chips
– register windows hold different thread 

contexts

§Up to four threads per node
§Thread switch on local cache miss



IBM PowerPC RS64-IV (2000)

§ Commercial coarse-grain multithreading CPU
§ Based on PowerPC with quad-issue in-order five-stage 

pipeline
§ Each physical CPU supports two virtual CPUs
§ On L2 cache miss, pipeline is flushed and execution 

switches to second thread
– short pipeline minimizes flush penalty (4 cycles), small compared to 

memory access latency
– flush pipeline to simplify exception handling
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Oracle/Sun Niagara processors

§ Target is datacenters running web servers and databases, 
with many concurrent requests

§ Provide multiple simple cores each with multiple 
hardware threads, reduced energy/operation though 
much lower single thread performance

§ Niagara-1 [2004], 8 cores, 4 threads/core
§ Niagara-2 [2007], 8 cores, 8 threads/core
§ Niagara-3 [2009], 16 cores, 8 threads/core
§ T4 [2011], 8 cores, 8 threads/core
§ T5 [2012], 16 cores, 8 threads/core
§ M5 [2012], 6 cores, 8 threads/core
§ M6 [2013], 12 cores, 8 threads/core
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Oracle/Sun Niagara-3, “Rainbow Falls” 2009
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Oracle M6 - 2013
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Oracle M6 - 2013

18



Oracle M6 - 2013
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CS152 Administrivia

§ PS 3 due today (March 17)

§ PS 4 out Wednesday March 20

§ (Lab 2) Please terminate your EC2 instances

§ Krste back on Wednesday JIT for Vectors I

– Cray-style, variable-length vectors, not packed SIMD

– Ph.D. Thesis: Vector Microprocessors (1998)

– Wrote the reading (H&P appendix G) – read it!
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CS252 Administrivia

§ Reading discussion postponed due to faculty retreat
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Simultaneous Multithreading (SMT) for 
OoO Superscalars

§ Techniques presented so far have all been “vertical” 
multithreading where each pipeline stage works on one 
thread at a time

§ SMT uses fine-grain control already present inside an OoO 
superscalar to allow instructions from multiple threads to 
enter execution on same clock cycle.  Gives better 
utilization of machine resources.
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For most apps, most execution units lie 
idle in an OoO superscalar
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From: Tullsen, Eggers, and Levy,
“Simultaneous Multithreading: 
Maximizing On-chip Parallelism”, 
ISCA 1995.

For an 8-way superscalar.



Superscalar Machine Efficiency
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Issue width

Time

Completely idle cycle 
(vertical waste)

Instruction 
issue

Partially filled cycle, 
i.e., IPC < 4
(horizontal waste)



Vertical Multithreading
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§ Cycle-by-cycle interleaving removes vertical waste, but 
leaves some horizontal waste

Issue width

Time

Second thread interleaved 
cycle-by-cycle

Instruction 
issue

Partially filled cycle, 
i.e., IPC < 4
(horizontal waste)



Chip Multiprocessing (CMP)
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§ What is the effect of splitting into multiple processors?
– reduces horizontal waste, 
– leaves some vertical waste, and 
– puts upper limit on peak throughput of each thread.

Issue width

Time



Ideal Superscalar Multithreading 
[Tullsen, Eggers, Levy, UW, 1995]
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§ Interleave multiple threads to multiple issue slots with no 
restrictions

Issue width

Time



O-o-O Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

§ Add multiple contexts and fetch engines and allow 
instructions fetched from different threads to issue 
simultaneously

§ Utilize wide out-of-order superscalar processor issue 
queue to find instructions to issue from multiple threads

§ OOO instruction window already has most of the circuitry 
required to schedule from multiple threads

§ Any single thread can utilize whole machine
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SMT adaptation to parallelism type 
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For regions with high thread-level 
parallelism (TLP) entire machine 
width is shared by all threads

Issue width

Time

Issue width

Time

For regions with low thread-level 
parallelism (TLP) entire machine width 
is available for instruction-level 
parallelism (ILP)



Pentium-4 Hyperthreading (2002)
§ First commercial SMT design (2-way SMT)
§ Logical processors share nearly all resources of the physical processor

– Caches, execution units, branch predictors
§ Die area overhead of hyperthreading ~ 5%
§ When one logical processor is stalled, the other can make progress

– No logical processor can use all entries in queues when two threads are 
active

§ Processor running only one active software thread runs at 
approximately same speed with or without hyperthreading

§ Hyperthreading dropped on OoO P6 based followons to Pentium-4 
(Pentium-M, Core Duo, Core 2 Duo), until revived with Nehalem 
generation machines in 2008.

§ Intel Atom (in-order x86 core) has two-way vertical multithreading
– Hyperthreading == (SMT for Intel OoO & Vertical for Intel InO)

30



IBM Power 4
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Single-threaded predecessor to Power 5.
8 execution units in out-of-order engine, 
each may issue an instruction each cycle.
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Power 4

Power 5

2 fetch (PC),
2 initial decodes

2 commits 
(architected 
register sets)



Power 5 data flow ...
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Why only 2 threads? With 4, one of the shared resources 
(physical registers, cache, memory bandwidth) would be 
prone to bottleneck 



Initial Performance of SMT

§ Pentium-4 Extreme SMT yields 1.01 speedup for 
SPECint_rate benchmark and 1.07 for SPECfp_rate

– Pentium-4 is dual-threaded SMT
– SPECRate requires that each SPEC benchmark be run against a 

vendor-selected number of copies of the same benchmark

§ Running on Pentium-4 each of 26 SPEC benchmarks paired 
with every other (262 runs) speed-ups from 0.90 to 1.58; 
average was 1.20

§ Power 5, 8-processor server 1.23 faster for SPECint_rate
with SMT, 1.16 faster for SPECfp_rate

§ Power 5 running 2 copies of each app speedup between 
0.89 and 1.41

– Most gained some
– Fl.Pt. apps had most cache conflicts and least gains
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SMT Performance: Application Interaction

35Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”

So long as they 
aren’t banging on 

the L2 too. 

Not affected by other 
programs

Your favorite 
benchmark 
from Lab2



SMT Performance: Application Interaction

36Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”

Doesn’t 
play nice  

Your favorite 
benchmark 
from Lab2



37Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”

SMT Performance: Application Interaction

Very sensitive to second program



Icount Choosing Policy
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Why does this enhance throughput?

Fetch from thread with the least instructions in flight.



Summary: Multithreaded Categories
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Multithreaded Design Discussion
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§Want to build a multithreaded processor, 
how should each component be changed 
and what are the tradeoffs?
§L1 caches (instruction and data)
§L2 caches
§Branch predictor
§TLB
§Physical register file



SMT & Security
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§ Most hardware attacks rely on shared hardware resources 
to establish a side-channel

– Eg. Shared outer caches, DRAM row buffers 
§ SMT gives attackers high-BW access to a number of 

previously private hardware resources that are shared by 
co-resident threads:

§ TLBs: TLBleed (June, ‘18)
§ L1 caches: CacheBleed (2016)
§ Functional unit ports: PortSmash (Nov, ’18)

OpenBSD 6.4 à Disabled HT in BIOS,  AMD SMT to follow
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