
CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 14 – Multithreading

Krste Asanovic
Speaker: David Biancolin

Electrical Engineering and Computer Sciences
University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

Last Time Lecture 13: VLIW

§ In a classic VLIW, compiler is responsible for avoiding all
hazards -> simple hardware, complex compiler. Later
VLIWs added more dynamic hardware interlocks

§ Use loop unrolling and software pipelining for loops, trace
scheduling for more irregular code

§ Static scheduling difficult in presence of unpredictable
branches and variable latency memory

2

Multithreading

§ Difficult to continue to extract instruction-level parallelism
(ILP) from a single sequential thread of control

§ Many workloads can make use of thread-level parallelism
(TLP)

– TLP from multiprogramming (run independent
sequential jobs)

– TLP from multithreaded applications (run one job
faster using parallel threads)

§ Multithreading uses TLP to improve utilization of a single
processor

3

Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

One way is to interleave execution of instructions from
different program threads on same pipeline

4

F D X MW
t0 t1 t2 t3 t4 t5 t6 t7 t8

T1:LD x1,0(x2)
T2:ADD x7,x1,x4
T3:XORI x5,x4,12
T4:SD 0(x7),x5
T1:LD x5,12(x1)

t9

F D X MW
F D X MW

F D X MW
F D X MW

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in a
thread always
completes write-back
before next instruction
in same thread reads
register file

CDC 6600 Peripheral Processors
(Cray, 1964)

§ First multithreaded hardware
§ 10 “virtual” I/O processors
§ Fixed interleave on simple pipeline
§ Pipeline has 100ns cycle time
§ Each virtual processor executes one instruction every 1000ns
§ Accumulator-based instruction set to reduce processor state

5

Simple Multithreaded Pipeline

§ Have to carry thread select down pipeline to ensure correct state bits
read/written at each pipe stage

§ Appears to software (including OS) as multiple, albeit slower, CPUs

6

+1

2 Thread
select

PC
1PC1PC1PC1

I$ IR GPR1GPR1GPR1GPR1

X

Y

2

D$

Multithreading Costs

§ Each thread requires its own user state
– PC
– GPRs

§ Also, needs its own system state
– Virtual-memory page-table-base register
– Exception-handling registers

§ Other overheads:
– Additional cache/TLB conflicts from competing threads
– (or add larger cache/TLB capacity)
– More OS overhead to schedule more threads (where do all these

threads come from?)

7

Thread Scheduling Policies
§ Fixed interleave (CDC 6600 PPUs, 1964)

– Each of N threads executes one instruction every N cycles
– If thread not ready to go in its slot, insert pipeline bubble

§ Software-controlled interleave (TI ASC PPUs, 1971)
– OS allocates S pipeline slots amongst N threads
– Hardware performs fixed interleave over S slots, executing whichever

thread is in that slot

§ Hardware-controlled thread scheduling (HEP, 1982)
– Hardware keeps track of which threads are ready to go
– Picks next thread to execute based on hardware priority scheme

8

Denelcor HEP
(Burton Smith, 1982)

First commercial machine to use hardware threading in
main CPU

– 120 threads per processor
– 10 MHz clock rate
– Up to 8 processors
– precursor to Tera MTA (Multithreaded Architecture)

9

CS252

Tera MTA (1990-)
§ Up to 256 processors
§ Up to 128 active threads per processor
§ Processors and memory modules populate a

sparse 3D torus interconnection fabric
§ Flat, shared main memory

– No data cache
– Sustains one main memory access per cycle per

processor

§ GaAs logic in prototype, 1KW/processor @
260MHz

– Second version CMOS, MTA-2, 50W/processor
– Newer version, XMT, fits into AMD Opteron socket,

runs at 500MHz
– Newest version, XMT2, has higher memory

bandwidth and capacity

10

CS252

MTA Pipeline

11

A

W

C

W

M

Inst Fetch

M
em

or
y

Po
ol

Retry Pool

Interconnection Network

W
rit

e
Po

ol

W

Memory pipeline

Issue Pool
• Every cycle, one VLIW
instruction from one active thread
is launched into pipeline

• Instruction pipeline is 21 cycles

long

• Memory operations incur ~150

cycles of latency

Assuming a single thread issues one

instruction every 21 cycles, and clock rate

is 260 MHz…

What is single-thread performance?

Effective single-thread issue rate is

260/21 = 12.4 MIPS

Coarse-Grain Multithreading

§ Tera MTA designed for supercomputing applications with
large data sets and low locality

– No data cache
– Many parallel threads needed to hide large memory latency

§ Other applications are more cache friendly
– Few pipeline bubbles if cache mostly has hits
– Just add a few threads to hide occasional cache miss latencies
– Swap threads on cache misses

12

MIT Alewife (1990)

13

§Modified SPARC chips
– register windows hold different thread

contexts

§Up to four threads per node
§Thread switch on local cache miss

IBM PowerPC RS64-IV (2000)

§ Commercial coarse-grain multithreading CPU
§ Based on PowerPC with quad-issue in-order five-stage

pipeline
§ Each physical CPU supports two virtual CPUs
§ On L2 cache miss, pipeline is flushed and execution

switches to second thread
– short pipeline minimizes flush penalty (4 cycles), small compared to

memory access latency
– flush pipeline to simplify exception handling

14

Oracle/Sun Niagara processors

§ Target is datacenters running web servers and databases,
with many concurrent requests

§ Provide multiple simple cores each with multiple
hardware threads, reduced energy/operation though
much lower single thread performance

§ Niagara-1 [2004], 8 cores, 4 threads/core
§ Niagara-2 [2007], 8 cores, 8 threads/core
§ Niagara-3 [2009], 16 cores, 8 threads/core
§ T4 [2011], 8 cores, 8 threads/core
§ T5 [2012], 16 cores, 8 threads/core
§ M5 [2012], 6 cores, 8 threads/core
§ M6 [2013], 12 cores, 8 threads/core

15

Oracle/Sun Niagara-3, “Rainbow Falls” 2009

16

Oracle M6 - 2013

17

Oracle M6 - 2013

18

Oracle M6 - 2013

19

CS152 Administrivia

§ PS 3 due today (March 17)

§ PS 4 out Wednesday March 20

§ (Lab 2) Please terminate your EC2 instances

§ Krste back on Wednesday JIT for Vectors I

– Cray-style, variable-length vectors, not packed SIMD

– Ph.D. Thesis: Vector Microprocessors (1998)

– Wrote the reading (H&P appendix G) – read it!

20

CS252

CS252 Administrivia

§ Reading discussion postponed due to faculty retreat

21

Simultaneous Multithreading (SMT) for
OoO Superscalars

§ Techniques presented so far have all been “vertical”
multithreading where each pipeline stage works on one
thread at a time

§ SMT uses fine-grain control already present inside an OoO
superscalar to allow instructions from multiple threads to
enter execution on same clock cycle. Gives better
utilization of machine resources.

22

For most apps, most execution units lie
idle in an OoO superscalar

23

From: Tullsen, Eggers, and Levy,
“Simultaneous Multithreading:
Maximizing On-chip Parallelism”,
ISCA 1995.

For an 8-way superscalar.

Superscalar Machine Efficiency

24

Issue width

Time

Completely idle cycle
(vertical waste)

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

Vertical Multithreading

25

§ Cycle-by-cycle interleaving removes vertical waste, but
leaves some horizontal waste

Issue width

Time

Second thread interleaved
cycle-by-cycle

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

Chip Multiprocessing (CMP)

26

§ What is the effect of splitting into multiple processors?
– reduces horizontal waste,
– leaves some vertical waste, and
– puts upper limit on peak throughput of each thread.

Issue width

Time

Ideal Superscalar Multithreading
[Tullsen, Eggers, Levy, UW, 1995]

27

§ Interleave multiple threads to multiple issue slots with no
restrictions

Issue width

Time

O-o-O Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

§ Add multiple contexts and fetch engines and allow
instructions fetched from different threads to issue
simultaneously

§ Utilize wide out-of-order superscalar processor issue
queue to find instructions to issue from multiple threads

§ OOO instruction window already has most of the circuitry
required to schedule from multiple threads

§ Any single thread can utilize whole machine

28

SMT adaptation to parallelism type

29

For regions with high thread-level
parallelism (TLP) entire machine
width is shared by all threads

Issue width

Time

Issue width

Time

For regions with low thread-level
parallelism (TLP) entire machine width
is available for instruction-level
parallelism (ILP)

Pentium-4 Hyperthreading (2002)
§ First commercial SMT design (2-way SMT)
§ Logical processors share nearly all resources of the physical processor

– Caches, execution units, branch predictors
§ Die area overhead of hyperthreading ~ 5%
§ When one logical processor is stalled, the other can make progress

– No logical processor can use all entries in queues when two threads are
active

§ Processor running only one active software thread runs at
approximately same speed with or without hyperthreading

§ Hyperthreading dropped on OoO P6 based followons to Pentium-4
(Pentium-M, Core Duo, Core 2 Duo), until revived with Nehalem
generation machines in 2008.

§ Intel Atom (in-order x86 core) has two-way vertical multithreading
– Hyperthreading == (SMT for Intel OoO & Vertical for Intel InO)

30

IBM Power 4

31

Single-threaded predecessor to Power 5.
8 execution units in out-of-order engine,
each may issue an instruction each cycle.

32

Power 4

Power 5

2 fetch (PC),
2 initial decodes

2 commits
(architected
register sets)

Power 5 data flow ...

33

Why only 2 threads? With 4, one of the shared resources
(physical registers, cache, memory bandwidth) would be
prone to bottleneck

Initial Performance of SMT

§ Pentium-4 Extreme SMT yields 1.01 speedup for
SPECint_rate benchmark and 1.07 for SPECfp_rate

– Pentium-4 is dual-threaded SMT
– SPECRate requires that each SPEC benchmark be run against a

vendor-selected number of copies of the same benchmark

§ Running on Pentium-4 each of 26 SPEC benchmarks paired
with every other (262 runs) speed-ups from 0.90 to 1.58;
average was 1.20

§ Power 5, 8-processor server 1.23 faster for SPECint_rate
with SMT, 1.16 faster for SPECfp_rate

§ Power 5 running 2 copies of each app speedup between
0.89 and 1.41

– Most gained some
– Fl.Pt. apps had most cache conflicts and least gains

34

SMT Performance: Application Interaction

35Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”

So long as they
aren’t banging on

the L2 too.

Not affected by other
programs

Your favorite
benchmark
from Lab2

SMT Performance: Application Interaction

36Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”

Doesn’t
play nice

Your favorite
benchmark
from Lab2

37Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”

SMT Performance: Application Interaction

Very sensitive to second program

Icount Choosing Policy

38

Why does this enhance throughput?

Fetch from thread with the least instructions in flight.

Summary: Multithreaded Categories

39

Ti
m

e
(p

ro
ce

ss
or

 cy
cle

) Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous

Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

Multithreaded Design Discussion

40

§Want to build a multithreaded processor,
how should each component be changed
and what are the tradeoffs?
§L1 caches (instruction and data)
§L2 caches
§Branch predictor
§TLB
§Physical register file

SMT & Security

41

§ Most hardware attacks rely on shared hardware resources
to establish a side-channel

– Eg. Shared outer caches, DRAM row buffers
§ SMT gives attackers high-BW access to a number of

previously private hardware resources that are shared by
co-resident threads:

§ TLBs: TLBleed (June, ‘18)
§ L1 caches: CacheBleed (2016)
§ Functional unit ports: PortSmash (Nov, ’18)

OpenBSD 6.4 à Disabled HT in BIOS, AMD SMT to follow

Acknowledgements

§ This course is partly inspired by previous MIT 6.823 and
Berkeley CS252 computer architecture courses created by
my collaborators and colleagues:

– Arvind (MIT)
– Scott Beamer (UCB)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)

42

