CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 15 — Vectors

Krste Asanovic
Electrical Engineering and Computer Sciences
University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

w
c

Last Time Lecture 14: Multithreading

perscalar

<— Time (processor cycle)
]

= = NENN DEN
NN [] NN [EE
= N N
e = [N B N
NN NN]
= [NN NN O EE
NN NN E'N i
[] .N" N DN
= L IN B N
= ENN
= [e BN []
N E J:Q* N NE
] Thread 1 Thread 3 Thread 5
N Thread 2 4 Thread 4 dle slot

Fine-Grained Coarse-Grained Multiprocessing Myitithreading

Simultaneous

Supercomputer Applications

= Typical application areas

Military research (nuclear weapons, cryptography)
Scientific research

Weather forecasting

Oil exploration

Industrial design (car crash simulation)
Bioinformatics

Cryptography

= All involve huge computations on large data set

= Supercomputers: CDC6600, CDC7600, Cray-1, ...

" In 70s-80s, Supercomputer = Vector Machine

Vector Supercomputers

= Epitomized by Cray-1,
1976:

= Scalar Unit
— Load/Store Architecture

= \/ector Extension
— Vector Registers
— Vector Instructions

" Implementation

— Hardwired Control

— Highly Pipelined Functional
Units

— Interleaved Memory System
— No Data Caches
— No Virtual Memory

[©Cray Research, 1976]

Vector Programming Model

/" Scalar Registers Vector Registers

x31 v31l

x0 v0
[0] [1] [2] [MAXVL-1]

k Vector Length Register vl
" Vector Arithmeti T T+

ector Arithmetic v N 7 N 7 N 7 N 7 N 7 N 7

Instructions @

vadd v3, vl1l, v2 v3I ‘ ‘ ‘ ‘ ‘ :

.

AN

/Vector Load and Store Vector Reg/ster

AN

Instructions

A

k Base, x1 Strlde, x2

»

g Nkmow

Vector Code Example

Vector Code
C code _
for (i=0; i<64; i++) # S?alar Code 1i x4, 64
C[i] = A[i] + B[i]; 1i x4, 64 setvl x4
loop: vld vl1, x1
fld £f1, 0(x1l) vld v2, x2
fld £2, 0(x2) vadd v3,vl,v2
fadd.d £3,f1,£2 vst v3, x3
fsd £3, 0(x3)
addi x1, 8
addi x2, 8
addi x3, 8
subi x4, 1
bnez x4, loop

Cray-1 (1976)

Single-Port
Memory

16 banks of 64-bit
words
+

8-bit SECDED

80MW/sec data
load/store

320MW/sec
instruction
buffer refill

memory bank cycle 50 ns

4 Instruction Buffers

processor cycle 12.5 ns (80MHz)

Y V. Mask
V2 j
) 64ttement-Vecto V3 V. Length
N Registerq V4 Vk
i V5
V6
kit FP Add
% S »| FP Mul
((Ap)+jkm) 51 J
> 2 Sy FP Recip
S 3
(A,) 64 > 54 S,
0 R T Regs T, o P Int Add
85 It 23 »| Int Logic
- Int shift
AO
((A)+jkm) Al Pop Cnt
> A2 A
A, A3 j .
(A,) 64 — A4 A "| Addr Add
> B. A5 >
B Regs |—=& 6| A Addr Mul
AZ
—z R R
+/—]| 64-bitx16 |. "L_NIP "L_CIP
> LIP

Vector Instruction Set Advantages

= Compact

— one short instruction encodes N operations

" Expressive, tells hardware that these N
operations:
— are independent
— use the same functional unit
— access disjoint registers
— access registers in same pattern as previous instructions

— access a contiguous block of memory
(unit-stride load/store)

— access memory in a known pattern
(strided load/store)

= Scalable

— can run same code on more parallel pipelines (lanes)

Vector Arithmetic Execution

e Use deep pipeline (=> fast clock) to v v v
execute element operations 112113
e Simplifies control of deep pipeline
because elements in vector are e
independent (=> no hazards!) :\]
L L
AN
| e
Six-stage multiply pipeline \ /*
—

v3 <-vl *v2

Vector Instruction Execution

vadd vec, va, vb

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

Al6] B[6] A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]
A[5] B[5] A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]
A[4] B[4] A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]
A[3] B[3] A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
v v v v v v v v v v
|] | I] |] |]
\ C[2] / \ C[8] / \ C[9] / \C[lo] / \C[ll] /
L s a8 an

T e T

C[0] C[0] C[1] C[2] C[3]

Interleaved Vector Memory System

" Bank busy time: Time before bank ready to accept next request

" Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency

Base Stride
Vector Registers l l
—\¢ F ¢
Address il il
Generator +
0/1(2|3|4(5|6|7|81]9 |A C|D|E |F

Memory Banks

11

Vector Unit Structure
Functional Unit

7 - < N

Y Y Y Y

L L L L
VeCtor / \ \ 4 / \ \ 4 / \ \ 4 / \ V)
Registers

~1_ Elements Elements Elements Elements

0,438, .. 1,5,9, .. 2,6, 10, 3,7,11,

‘\ \ 4 \ 4 <]/7 ‘\ \ 4 \ 4 <]/7 .\"V \ 4 <]/7 ‘\ \ 4 \ 4 <]/7

L L L L

R R R R
Lane T Y T T T

Memory Subsystem

12

TO Vector Microprocessor (UCB/ICSI, 1995)

PESSIREREIRI

Vector register
elements striped
over lanes

Lane

{241 25E26§[27 28129] 30]’[
gJ16]17J[18][19]20][21] 221[2
881 [9] [10][11]f12] [13][14][15]

i
[0]?;,[1]??5[2]??‘[315?[4]F,[513?[6]?‘[7] :

£
E:
:q
-
=
&
£}
.L 35
oy
o
i:s
™
EW
&
-r
l~
N
>
§.
E»
L
E,

M
(R = ST

Vssdniabennin ,.f..? Nekniahehninneininbsbuiohebninkshointnhsaniobsnsrunsunionsins ool

13

Vector Instruction Parallelism

= Can overlap execution of multiple vector instructions
— example machine has 32 elements per vector register and 8 lanes

Load Unit Multiply Unit Add Unit
Qccccﬁ-ﬂjﬂ

QQQOQLn-wL[AAAAAF.A.

time © 000000 o|aiaiaalidd aaeEnEnn

@>0000000 AAAAAsAsailnemEE

OO0[00O|==NA A AAAAAAEEEEEEEE

@@@@@é—n%ng'AAAAA4..A. EEEEEEEN

olojojojojoo|blalalaalaj{2dd fm[m E[E/EEEE

olojlolololololo]ja|alaAlAlalalaAA|lmEEmmE EE

AAAAAAAANEEEEEEE

Instruction LU

issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle
14

Vector Chaining

= VVector version of register bypassing

— introduced with Cray-1

vlid vl
vmul v3,vl,v2
vadd v57\v3,v4

V1

Load
Unit

Memory

V2

V3 V4

Chain

Mult.

V5

&ha{n

Add

15

Vector Chaining Advantage

e Without chaining, must wait for last element of result to be
written before starting dependent instruction

Time— \Yelo

e \With chaining, can start dependent instruction as soon as first
result appears

16

Vector Startup

" Two components of vector startup penalty
— functional unit latency (time through pipeline)

— dead time or recovery time (time before another vector
instruction can start down pipeline)

Functional Unit Latency

First Vector
Instruction

»ld

Dead Time

R XX |W
R XX |W
RIX [X |X|W
RIX | X [X|W
RIX | X [X|W
RIX | X [X|W
R [X |X [X |W
RIX [X |X|W

. DeadTime | RIX Ix |x |w

R (X | X X

Second
Vector
Instruction

17

QQQQOQIOOOOQQQO

QQQQOQIOOOOQQQO

HE

<

Dead Time and Short Vectors

@
No dead time To @ @0 oo o e

4 cycles
dead time T0, Eight lanes

No dead time
100% efficiency with 8-element vectors

64 cycles
active

Cray C90, Two lanes
4-cycle dead time
Maximum efficiency 94% with 128-element vectors

18

Vector Memory-Memory versus Vector

Register Machines

= VVector memory-memory instructions hold all vector
operands in main memory

* The first vector machines, CDC Star-100 (‘73) and Tl ASC
(‘71), were memory-memory machines

" Cray-1 ("76) was first vector register machine

Vector Memory-Memory Code

Example Source Code vadd C, A, B
for (i=0; i<N; i++) vsub D, A, B
{

C[i] = A[i] + B[i]; Vector Register Code
D[i]

A[i] - B[i]:; vld V1, A
} vld V2, B

vadd V3, V1, V2
vst V3, C
vsub V4, V1, V2
vst V4, D

19

Vector Memory-Memory vs. Vector
Register Machines

" Vector memory-memory architectures (VMMA) require
greater main memory bandwidth, why?

— All operands must be read in and out of memory
= VMMAs make if difficult to overlap execution of multiple
vector operations, why?

— Must check dependencies on memory addresses

=" VMMASs incur greater startup latency

— Scalar code was faster on CDC Star-100 for vectors < 100
elements

— For Cray-1, vector/scalar breakeven point was around 2-4
elements

= Apart from CDC follow-ons (Cyber-205, ETA-10) all major
vector machines since Cray-1 have had vector register
architectures

" (we ignore vector memory-memory from now on)

20

CS152 Administrivia

= Regrade requests due by Friday, 12:30pm
= Spring break next week — no class or other meetings

21

CS252 Administrivia

* Makeup readings after spring break

CS252

22

Automatic Code Vectorization
for (i=0; i < N; i++)
C[i] = A[1i] + B[1i]; ,
Scalar Sequential Code Vectorized Code

lter. 1 :

Time

Iter 2 Vector Instruction

:Vectorization is a massive compile-time reordering
:of operation sequencing

i=> requires extensive loop-dependence analysis

’ 23

Vector Stripmining
Problem: Vector registers have finite length

Solution: Break loops into pieces that fit in registers, “Stripmining”
andi x1, xN, 63 # N mod 64

_ _ _ setvl x1 # Do remainder
for (1=0; i<N; 1i++)
c 4 : .. loop:
C[i] = A[i]+B[1i]; vld vl, xA
A B C sll x2, x1, 3 # Multiply by 8
:K:}»}J@wmmdm' add xA, x2 # Bump pointer
S i _ vld v2, xB
) add xB, x2
::()» - 64 elements vadd v3, vl, v2

vst v3, xC

1 -] add xC, x2
sub xN, x1 # Subtract elements
3@4 1i x1, 64
— | setvl x1 # Reset full length

bgtz xN, loop # Any more to do?
24

Vector Conditional Execution

Problem: Want to vectorize loops with conditional code:
for (i=0; i<N; i++)
if (A[i]>0) then
A[i] = B[i];

Solution: Add vector mask (or flag) registers
— vector version of predicate registers, 1 bit per element
...and maskable vector instructions

— vector operation becomes bubble (“NOP”) at elements
where mask bit is clear

Code example:

cvm Turn on all elements
vld vA, xA Load entire A vector
vgt vA, f£O0 Set bits in mask register where A>0

vld vA, xB Load B vector into A under mask

vst vA, xA

H H H H

Store A back to memory under mask

25

Simple Implementation

— execute all N operations, turn off
result writeback according to mask

M[7]=1
M[6]=0
M[5]=1
M[4]=1
M[3]=0

M[2]=0
M[1]=1

Masked Vector Instructions

A[7] B[7]
A[6] B[6]
A[5] B[5]
A[4] B[4]
A[3] B[3]
I |

T C2] f
cril |
C[O]

M[0]=0 1

Write Enable

CS252

Write data port

Density-Time Implementation

— scan mask vector and only execute
elements with non-zero masks

M[7]=1
ME=0 A[7] B[7]

M[5]=1 i i

M[4]=1\ | L
|\/|[3]=0\A C[5] /
M[2]=0 1 Cr4] /¢
M[1]=1 | —
M[0]=0 \ J

C[1]

Write data port

26

CS25

Compress/Expand Operations

= Compress packs non-masked elements from one vector
register contiguously at start of destination vector register

— population count of mask vector gives packed vector length

" Expand performs inverse operation

M[7]=1 | —> A[7] (A[7] |+ M[7]=1
M[6]=0 A[6] B[6] M[6]=0
M[5]=1 | —> A[5] « A[5] | +TMI[5]=1
M[4]=1 | —> A[4] Al4] | < M[4]=1
M[3]=0 A[3] «Al7] B[3] M[3]=0
M[2]=0 A[2] 'A[5] B[2] M[2]=0
M[1]=1 |— A[1] ' A4] A[1] | <« M[1]=1
M[0]=0 ALO] N Al1] e B[O] M[0]=0

Compress Expand

Used for density-time conditionals and also for general
ielection operations

Vector Reductions

Problem: Loop-carried dependence on reduction variables
sum = 0;
for (i=0; i<N; i++)
sum += A[i]; # Loop-carried dependence on
sum

Solution: Re-associate operations if possible, use binary tree to perform
reduction

Rearrange as:
sum[0:VL-1] = O # Vector of VL partial sums

for (i=0; i<N; i+=VL) # Stripmine VL-sized chunks
sum[0:VL-1] += A[i:i+VL-1]; # Vector sum

Now have VL partial sums in one vector register

do {
VL = VL/2; # Halve vector length
sum[0:VL-1] 4= sum[VL:2*VL-1] # Halve no. of
partials

} while (VL>1)

28

Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

vld vD, xD # Load indices in D vector
vldx vC, xC, vD # Load indirect from xC base
vld vB, xB # Load B vector

vadd vA,vB,vC # Do add

vst VA, xA # Store result

29

Histogram with Scatter/Gather

Histogram example:
for (i=0; i<N; i++)
A[B[i]]++;

Is following a correct translation?

vld vB, xB # Load indices in B vector
vldx vA, xA, vB # Gather initial A wvalues
vadd vA, vA, 1 # Increment

vstx vA, xA, vB # Scatter incremented values

30

Vector Memory Models

= Many vector machines have a very relaxed memory model, e.g.
vst vl, x1 # Store vector to x1

vld v2, x1 # Load vector from x1

— No guarantee that elements of v2 will have value of elements of vl even when
store and load execute by same processor!

= Requires explicit memory barrier or fence

vst vl, x1 # Store wvector to x1
fence # Enforce ordering s->1
vld v2, x1 # Load vector from x1

Vector machines support highly parallel memory systems (multiple
lanes and multiple load and store units) with long latency (100+ clock
cycles)

— hardware coherence checks would be prohibitively expensive
— vectorizing compiler can eliminate most dependencies

CS252

Packed SIMD Extensions

64b

32b

16b

16b

16b

16b

8b

8b

8b

8b

8b

8b

8b 8b

= Very short vectors added to existing ISAs for microprocessors

= Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b

— Lincoln Labs TX-2 from 1957 had 36b datapath split into 2x18b or 4x9b
— Newer designs have wider registers

* 128b for PowerPC Altivec, Intel SSE2/3/4

e 256b/512b for Intel AVX
= Single instruction operates on all elements within register

~ 16b

~ 16b

16b

~ 16b

A\
\

\ 16b

\ 16b

\ 16b

\ 16b

4x16b adds g’)/

J

J

J

16b

16b

16b

16b

32

Packed SIMD versus Vectors

= Limited instruction set:

— no vector length control
— no strided load/store or scatter/gather
— unit-stride loads must be aligned to 64/128-bit boundary

" Limited vector register length:
— requires superscalar dispatch to keep multiply/add/load units busy
— loop unrolling to hide latencies increases register pressure

" Trend towards fuller vector support in microprocessors

— Better support for misaligned memory accesses
— Support of double-precision (64-bit floating-point)

— New Intel AVX spec (announced April 2008), 256b vector registers
(expandable up to 1024b), gather added, scatter to follow

— ARM Scalable Vector Extensions (SVE)

33

Acknowledgements

" This course is partly inspired by previous MIT 6.823 and
Berkeley CS252 computer architecture courses created by
my collaborators and colleagues:

— Arvind (MIT)

— Joel Emer (Intel/MIT)

— James Hoe (CMU)

— John Kubiatowicz (UCB)
— David Patterson (UCB)

34

