CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 15 — Vectors

Krste Asanovic
Electrical Engineering and Computer Sciences
University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152



w
c

Last Time Lecture 14: Multithreading

perscalar

<— Time (processor cycle)
]

= = NENN DEN
NN [] NN [ EE
= N N
e = [ N B N
NN NN ]
= [ NN NN O EE
NN NN E'N i
[ ] .N" N DN
= L IN B N
= ENN
= [ e BN [ ]
N E J:Q* N NE
] Thread 1 Thread 3 Thread 5
N Thread 2 4 Thread 4 dle slot

Fine-Grained Coarse-Grained Multiprocessing  Myitithreading

Simultaneous




Supercomputer Applications

= Typical application areas

Military research (nuclear weapons, cryptography)
Scientific research

Weather forecasting

Oil exploration

Industrial design (car crash simulation)
Bioinformatics

Cryptography

= All involve huge computations on large data set

= Supercomputers: CDC6600, CDC7600, Cray-1, ...

" In 70s-80s, Supercomputer = Vector Machine



Vector Supercomputers

= Epitomized by Cray-1,
1976:

= Scalar Unit
— Load/Store Architecture

= \/ector Extension
— Vector Registers
— Vector Instructions

" Implementation

— Hardwired Control

— Highly Pipelined Functional
Units

— Interleaved Memory System
— No Data Caches
— No Virtual Memory

[©Cray Research, 1976]



Vector Programming Model
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Vector Code Example

# Vector Code
# C code _
for (i=0; i<64; i++) # S?alar Code 1i x4, 64
C[i] = A[i] + B[i]; 1i x4, 64 setvl x4
loop: vld vl1, x1
fld £f1, 0(x1l) vld v2, x2
fld £2, 0(x2) vadd v3,vl,v2
fadd.d £3,f1,£2 vst v3, x3
fsd £3, 0(x3)
addi x1, 8
addi x2, 8
addi x3, 8
subi x4, 1
bnez x4, loop




Cray-1 (1976)
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Vector Instruction Set Advantages

= Compact

— one short instruction encodes N operations

" Expressive, tells hardware that these N
operations:
— are independent
— use the same functional unit
— access disjoint registers
— access registers in same pattern as previous instructions

— access a contiguous block of memory
(unit-stride load/store)

— access memory in a known pattern
(strided load/store)

= Scalable

— can run same code on more parallel pipelines (lanes)



Vector Arithmetic Execution

e Use deep pipeline (=> fast clock) to v v v
execute element operations 112113
e Simplifies control of deep pipeline
because elements in vector are e
independent (=> no hazards!) :\ ]
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Vector Instruction Execution

vadd vec, va, vb

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units
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Interleaved Vector Memory System

" Bank busy time: Time before bank ready to accept next request

" Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency

Base Stride
Vector Registers l l
—\¢ F ¢
Address il il
Generator +
0/1(2|3|4(5|6|7|81]9 |A C|D|E |F

Memory Banks
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Vector Unit Structure
Functional Unit
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TO Vector Microprocessor (UCB/ICSI, 1995)
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Vector Instruction Parallelism

= Can overlap execution of multiple vector instructions
— example machine has 32 elements per vector register and 8 lanes

Load Unit Multiply Unit Add Unit
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Complete 24 operations/cycle while issuing 1 short instruction/cycle
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Vector Chaining

= VVector version of register bypassing

— introduced with Cray-1

vlid vl
vmul v3,vl,v2
vadd v57\v3,v4

V1

Load
Unit

Memory

V2

V3 V4

Chain

Mult.

V5

&ha{n

Add

15



Vector Chaining Advantage

e Without chaining, must wait for last element of result to be
written before starting dependent instruction

Time— \Yelo

e \With chaining, can start dependent instruction as soon as first
result appears
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Vector Startup

" Two components of vector startup penalty
— functional unit latency (time through pipeline)

— dead time or recovery time (time before another vector
instruction can start down pipeline)

Functional Unit Latency
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Instruction
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Dead Time
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Vector Memory-Memory versus Vector

Register Machines

= VVector memory-memory instructions hold all vector
operands in main memory

* The first vector machines, CDC Star-100 (‘73) and Tl ASC
(‘71), were memory-memory machines

" Cray-1 ("76) was first vector register machine

Vector Memory-Memory Code

Example Source Code vadd C, A, B
for (i=0; i<N; i++) vsub D, A, B
{

C[i] = A[i] + B[i]; Vector Register Code
D[i]

A[i] - B[i]:; vld V1, A
} vld V2, B

vadd V3, V1, V2
vst V3, C
vsub V4, V1, V2
vst V4, D

19




Vector Memory-Memory vs. Vector
Register Machines

" Vector memory-memory architectures (VMMA) require
greater main memory bandwidth, why?

— All operands must be read in and out of memory
= VMMAs make if difficult to overlap execution of multiple
vector operations, why?

— Must check dependencies on memory addresses

=" VMMASs incur greater startup latency

— Scalar code was faster on CDC Star-100 for vectors < 100
elements

— For Cray-1, vector/scalar breakeven point was around 2-4
elements

= Apart from CDC follow-ons (Cyber-205, ETA-10) all major
vector machines since Cray-1 have had vector register
architectures

" (we ignore vector memory-memory from now on)
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CS152 Administrivia

= Regrade requests due by Friday, 12:30pm
= Spring break next week — no class or other meetings

21



CS252 Administrivia

* Makeup readings after spring break

CS252
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Automatic Code Vectorization
for (i=0; i < N; i++)
C[i] = A[1i] + B[1i]; ,
Scalar Sequential Code Vectorized Code

lter. 1 :

Time

Iter 2 Vector Instruction

:Vectorization is a massive compile-time reordering
:of operation sequencing

i=> requires extensive loop-dependence analysis

’ 23




Vector Stripmining
Problem: Vector registers have finite length

Solution: Break loops into pieces that fit in registers, “Stripmining”
andi x1, xN, 63 # N mod 64

_ _ _ setvl x1 # Do remainder
for (1=0; i<N; 1i++)
c 4 : .. loop:
C[i] = A[i]+B[1i]; vld vl, xA
A B C sll x2, x1, 3 # Multiply by 8
:K:}»}J@wmmdm' add xA, x2 # Bump pointer
S i _ vld v2, xB
) add xB, x2
::()» - 64 elements vadd v3, vl, v2

vst v3, xC

1 - ] add xC, x2
sub xN, x1 # Subtract elements
3@4 1i x1, 64
— | setvl x1 # Reset full length

bgtz xN, loop # Any more to do?
24



Vector Conditional Execution

Problem: Want to vectorize loops with conditional code:
for (i=0; i<N; i++)
if (A[i]>0) then
A[i] = B[i];

Solution: Add vector mask (or flag) registers
— vector version of predicate registers, 1 bit per element
...and maskable vector instructions

— vector operation becomes bubble (“NOP”) at elements
where mask bit is clear

Code example:

cvm Turn on all elements
vld vA, xA Load entire A vector
vgt vA, f£O0 Set bits in mask register where A>0

vld vA, xB Load B vector into A under mask

vst vA, xA

H H H H

Store A back to memory under mask

25



Simple Implementation

— execute all N operations, turn off
result writeback according to mask

M[7]=1
M[6]=0
M[5]=1
M[4]=1
M[3]=0

M[2]=0
M[1]=1

Masked Vector Instructions

A[7] B[7]
A[6] B[6]
A[5] B[5]
A[4] B[4]
A[3] B[3]
I |

T C2] f
cril |
C[O]

M[0]=0 1

Write Enable

CS252

Write data port

Density-Time Implementation

— scan mask vector and only execute
elements with non-zero masks

M[7]=1
ME=0 A[7]  B[7]

M[5]=1 i i

M[4]=1\ | L
|\/|[3]=0\A C[5] /
M[2]=0 1 Cr4] /¢
M[1]=1 | —
M[0]=0 \ J

C[1]

Write data port
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Compress/Expand Operations

= Compress packs non-masked elements from one vector
register contiguously at start of destination vector register

— population count of mask vector gives packed vector length

" Expand performs inverse operation

M[7]=1 | —> A[7] (A[7] |+ M[7]=1
M[6]=0 A[6] B[6] M[6]=0
M[5]=1 | —> A[5] « A[5] | +TMI[5]=1
M[4]=1 | —> A[4]  Al4] | < M[4]=1
M[3]=0 A[3] «Al7] B[3] M[3]=0
M[2]=0 A[2] 'A[5] B[2] M[2]=0
M[1]=1 |— A[1] ' A4] A[1] | <« M[1]=1
M[0]=0 ALO] N Al1] e B[O] M[0]=0

Compress Expand

Used for density-time conditionals and also for general
ielection operations



Vector Reductions

Problem: Loop-carried dependence on reduction variables
sum = 0;
for (i=0; i<N; i++)
sum += A[i]; # Loop-carried dependence on
sum

Solution: Re-associate operations if possible, use binary tree to perform
reduction

# Rearrange as:
sum[0:VL-1] = O # Vector of VL partial sums

for (i=0; i<N; i+=VL) # Stripmine VL-sized chunks
sum[0:VL-1] += A[i:i+VL-1]; # Vector sum

# Now have VL partial sums in one vector register

do {
VL = VL/2; # Halve vector length
sum[0:VL-1] 4= sum[VL:2*VL-1] # Halve no. of
partials

} while (VL>1)
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Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

vld vD, xD # Load indices in D vector
vldx vC, xC, vD # Load indirect from xC base
vld vB, xB # Load B vector

vadd vA,vB,vC # Do add

vst VA, xA # Store result

29



Histogram with Scatter/Gather

Histogram example:
for (i=0; i<N; i++)
A[B[i]]++;

Is following a correct translation?

vld vB, xB # Load indices in B vector
vldx vA, xA, vB # Gather initial A wvalues
vadd vA, vA, 1 # Increment

vstx vA, xA, vB # Scatter incremented values

30



Vector Memory Models

= Many vector machines have a very relaxed memory model, e.g.
vst vl, x1 # Store vector to x1

vld v2, x1 # Load vector from x1

— No guarantee that elements of v2 will have value of elements of vl even when
store and load execute by same processor!

= Requires explicit memory barrier or fence

vst vl, x1 # Store wvector to x1
fence # Enforce ordering s->1
vld v2, x1 # Load vector from x1

Vector machines support highly parallel memory systems (multiple
lanes and multiple load and store units) with long latency (100+ clock
cycles)

— hardware coherence checks would be prohibitively expensive
— vectorizing compiler can eliminate most dependencies

CS252



Packed SIMD Extensions

64b

32b

16b

16b

16b

16b

8b

8b

8b

8b

8b

8b

8b 8b

= Very short vectors added to existing ISAs for microprocessors

= Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b

— Lincoln Labs TX-2 from 1957 had 36b datapath split into 2x18b or 4x9b
— Newer designs have wider registers

* 128b for PowerPC Altivec, Intel SSE2/3/4

e 256b/512b for Intel AVX
= Single instruction operates on all elements within register

~ 16b

~ 16b

16b

~ 16b

A\
\

\ 16b

\ 16b

\ 16b

\ 16b

4x16b adds g’)/

J

J

J

16b

16b

16b

16b
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Packed SIMD versus Vectors

= Limited instruction set:

— no vector length control
— no strided load/store or scatter/gather
— unit-stride loads must be aligned to 64/128-bit boundary

" Limited vector register length:
— requires superscalar dispatch to keep multiply/add/load units busy
— loop unrolling to hide latencies increases register pressure

" Trend towards fuller vector support in microprocessors

— Better support for misaligned memory accesses
— Support of double-precision (64-bit floating-point)

— New Intel AVX spec (announced April 2008), 256b vector registers
(expandable up to 1024b), gather added, scatter to follow

— ARM Scalable Vector Extensions (SVE)
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