CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 16 GPUs

Krste Asanovic
Electrical Engineering and Computer Sciences
University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

Last Time in Lecture 15

Vector supercomputers

" Vector register versus vector memory
" Scaling performance with lanes

= Stripmining

= Chaining

" Masking

= Scatter/Gather

Types of Parallelism

" [nstruction-Level Parallelism (ILP)

— Execute independent instructions from one instruction stream in parallel
(pipelining, superscalar, VLIW)

" Thread-Level Parallelism (TLP)

— Execute independent instruction streams in parallel (multithreading,
multiple cores)

* Data-Level Parallelism (DLP)

— Execute multiple operations of the same type in parallel (vector/SIMD
execution)

= Which is easiest to program?
= Which is most flexible form of parallelism?

— i.e., can be used in more situations

= Which is most efficient?

— i.e., greatest tasks/second/area, lowest energy/task

Resurgence of DLP

= Convergence of application demands and technology
constraints drives architecture choice

=" New applications, such as graphics, machine vision,
speech recognition, machine learning, etc. all require large
numerical computations that are often trivially data
parallel

= SIMD-based architectures (vector-SIMD, subword-SIMD,
SIMT/GPUs) are most efficient way to execute these
algorithms

Packed SIMD Extensions

32b

32b

16b

16b

16b

16b

8b 8b

8b

8b

8b

8b

8b

8b

= Single instruction operates on all elements within register

Short vectors added to existing ISAs for microprocessors

= Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b
— Lincoln Labs TX-2 from 1957 had 36b datapath split into 2x18b or 4x9b

— Newer designs have wider registers

e 128b for PowerPC Altivec, Intel SSE2/3/4
e 256b for Intel AVX

16b

16b

A\

16b

16b

\

\ 16b

\ 16b

\ 16b

\ 16b

4x16b adds g

J

J

16b

16b

16b

16b

Multimedia Extensions versus Vectors

® Limited instruction set:

— no vector length control
— no strided load/store or scatter/gather
— unit-stride loads must be aligned to 64/128-bit boundary

" Limited vector register length:

— requires superscalar dispatch to keep multiply/add/load units
busy

— loop unrolling to hide latencies increases register pressure

" Trend towards fuller vector support in
MICroprocessors
— Better support for misaligned memory accesses
— Support of double-precision (64-bit floating-point)

— New Intel AVX spec (announced April 2008), 256b vector registers
(expandable up to 1024b)

Potential Parallel Speedup

DLP important for conventional CPUs

11

——MIMD*SIMD (32 b) - = Prediction for x86 processors,

from Hennessy & Patterson, 5%
edition

— Note: Educated guess, not Intel product
plans!

= TLP: 2+ cores / 2 years
= DLP: 2x width / 4 years

et MIMD*SIMD (64 b)
SIMD (32b)

—4—SIMD (64b)

~=-MIMD

= DLP will account for more
mainstream parallelism growth
than TLP in next decade.

— SIMD —single-instruction multiple-data
(DLP)

— MIMD- multiple-instruction multiple-data
(TLP)

2003 2007 2011 2015 2019 2023

Graphics Processing Units (GPUs)

" Original GPUs were dedicated fixed-function devices for
generating 3D graphics (mid-late 1990s) including high-
performance floating-point units

— Provide workstation-like graphics for PCs
— User could configure graphics pipeline, but not really program it

= Over time, more programmability added (2001-2005)

— E.g., New language Cg for writing small programs run on each vertex or
each pixel, also Windows DirectX variants

— Massively parallel (millions of vertices or pixels per frame) but very
constrained programming model
= Some users noticed they could do general-purpose
computation by mapping input and output data to images,
and computation to vertex and pixel shading
computations

— Incredibly difficult programming model as had to use graphics pipeline
model for general computation

General-Purpose GPUs (GP-GPUs)

" In 2006, Nvidia introduced GeForce 8800 GPU supporting
a new programming language: CUDA
— “Compute Unified Device Architecture”
— Subsequently, broader industry pushing for OpenCL, a vendor-neutral
version of same ideas.
" |dea: Take advantage of GPU computational performance
and memory bandwidth to accelerate some kernels for
general-purpose computing

= Attached processor model: Host CPU issues data-parallel
kernels to GP-GPU for execution

" This lecture has a simplified version of Nvidia CUDA-style
model and only considers GPU execution for
computational kernels, not graphics

— Would probably need another course to describe graphics processing

Simplified CUDA Programming Model

* Computation performed by a very large number of
independent small scalar threads (CUDA threads or
microthreads) grouped into thread blocks.

// C version of DAXPY loop.
void daxpy(int n, double a, double*x, double*y)

{ for (int i=0; i<n; i++)
yl[i] = a*x[1] + y[i]; }

// CUDA version.
__host // Piece run on host processor.
int nblocks = (n+255)/256; //256 CUDA threads/block

daxpy<<<nblocks,256>>>(n,2.0,x,y) ;

__device // Piece run on GP-GPU.
void daxpy(int n, double a, double*x, double*y)
{ int 1 = blockIdx.x*blockDim.x + threadId.x;

if (i<n) yl[il=a*x[i]+y[i]; }

10

Programmer’s View of Execution

Create enough
blocks to cover —
input vector

(NVIDIA calls this
ensemble of
blocks a Grid, can
be 2-dimensional)

threadld O

threadld 1

blockldx O

threadld 255

threadld O

threadld 1

blockldx 1

threadld 255

threadld O

blockldx

threadld 1

(n+255/256)

»

threadld 255i

blockDim = 256
(programmer can
choose)

Conditional (i<n)
turns off unused
threads in last block

11

Hardware Execution Model

Lane O Lane O Lane O
Lane 1 Lane 1 Lane 1
CPU ,
Lane 15 Lane 15 Lane 15
! Core 0 Corel | Core 15
CPU Memory GP‘EJ
GPU Memory

» GPU is built from multiple parallel cores, each core contains a
multithreaded SIMD processor with multiple lanes but with no
scalar processor

— some adding “scalar coprocessors” now

" CPU sends whole “grid” over to GPU, which distributes thread
blocks among cores (each thread block executes on one core)

— Programmer unaware of number of cores

12

Historical Retrospective, Cray-2 (1985)
» 243MHz ECL logic

= 2GB DRAM main memory (128 banks of 16 MB each)
— Bank busy time 57 clocks!

» Local memory of 128KB/core
= 1 foreground + 4 background vector processors

Foregroundd__||Id4] Lane

CPU
| 1L.Memory
‘IV'I' Core 0

Shared Memory

“Single Instruction, Multiple Thread” (SIMT)

= GPUs use a SIMT model, where individual scalar
instruction streams for each CUDA thread are grouped
together for SIMD execution on hardware (NVIDIA groups
32 CUDA threads into a warp)

UTO pTl pT2 pT3 ul4d pT5 ule uT7/

1d x

Scalar mul a
instruction 1d y
stream sa:i

SIMD execution across warp

14

Implications of SIMT Model

= All “vector” loads and stores are scatter-gather, as
individual uthreads perform scalar loads and stores
— GPU adds hardware to dynamically coalesce individual uthread loads and
stores to mimic vector loads and stores
" Every pthread has to perform stripmining calculations
redundantly (“am | active?”) as there is no scalar
processor equivalent

15

CS152 Administrivia

" PS 4 due Friday April 5 in Section
" Lab 4 out on Friday
" Lab 3 due Monday April 8

16

CS252 Administrivia

Next week readings: Cray-1, VLIW & Trace Scheduling

CS252

17

Conditionals in SIMT model

= Simple if-then-else are compiled into predicated

execution, equivalent to vector masking

" More complex control flow compiled into branches

= How to execute a vector of branches?

Scalar

instruction

stream

v

tid=threadid
If (tid >= n) skip
Call funcl
add
st y
skip:

MTO pT1 pT2 pT3 uT4 pT5 ulT6e pT7

SIMD execution across warp

18

Branch divergence

* Hardware tracks which pthreads take or don’t take branch
= |f all go the same way, then keep going in SIMD fashion
" |f not, create mask vector indicating taken/not-taken

= Keep executing not-taken path under mask, push taken
branch PC+mask onto a hardware stack and execute later

" When can execution of uthreads in warp reconverge?

19

NVIDIA Instruction Set Arch.

m |ISA is an abstraction of the hardware instruction set

= ‘Parallel Thread Execution (PTX)”
= Opcode.type d,a,b,c;
= Uses virtual registers
= Translation to machine code is performed in software

sjun buissaesold |ealydels

= Example:

shl.s32 R8, blockldx, 9 ; Thread Block ID * Block size (512 or 29)
add.s32 R8, R8, threadldx ; R8 =i=my CUDA thread ID
|d.global.f64 RDO, [X+R8] ; RDO = X]i]

|d.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

mul.f64 ROD, RDO, RD4 ; Product in RDO = RDO * RD4 (scalar a)
add.f64 ROD, RDO, RD2 ; Sum in RDO = RDO + RD2 (Y[i])
st.global.f64 [Y+R8], RDO ; Y[i] = sum (X[i]*a + Y[i])

Conditional Branching

s Like vector architectures, GPU branch hardware uses
Internal masks

m AlsSo uses

s Branch synchronization stack
= Entries consist of masks for each SIMD lane
= |.e. which threads commit their results (all threads execute)
= Instruction markers to manage when a branch diverges into
multiple execution paths
« Push on divergent branch
= ...and when paths converge
« Act as barriers

sjun buissaesold |ealydels

= Pops stack

s Per-thread-lane 1-bit predicate register, specified by
programmer

@
Example 8
>
=
L
if (X[i] !=0) ;D_,U
X[i] = X[i] = YTi[; B
else X[i] = Z[i; B,
>
Q
|d.global.f64 RDO, [X+R8] ; RDO = X]i] g
setp.neq.s32 P1, RDO, #0 ; P1 is predicate register 1 7]
@!'P1, bra ELSE1, *Push . Push old mask, set new mask bits
; if P1 false, go to ELSE1
|d.global.f64 RD2, [Y+R8] ; RD2 = YIi]
sub.f64 RDO, RDO, RD2 : Difference in RDO
st.global.f64 [X+R8], RDO ; X[i] = RDO
@P1, bra ENDIF1, *Comp , complement mask bits
; if P1 true, go to ENDIF1
ELSE1: |d.global.f64 RDO, [Z+R8] : RDO = Z][i]

st.global.f64 [X+R8], RD0O : X[i] = RDO
ENDIF1: <next instruction>, *Pop , pop to restore old mask

Warps are multithreaded on core

SIMT muitithhroadad
msiruchon schedular = One warp of 32 uthreads is a
- single thread in the hardware
L1 | N I .
,,;pg ——— - Multlple warp threads. are
U IR O O O interleaved in execution on a
o "_p' T — I single core to hide latencies
R EEEEEEEEEEE (memory and functional unit)
| I N N U SN N N N N N N N N A .
warp 3 instraction 05 | - A single thread block can
U BRI B B B B B O contain multiple warps (up to
o 512 uT max in CUDA), all
warp 8 instraction 12 mapped to single core
[fF i ’ / ']] .
reyyeteganayeyd = Can have multiple blocks
warp 3 instruction 96 executing on one core
 EEEREREEEREEEERERRERE
N N O O O |
43

[Nvidia, 2010] 23

GPU Memory Hierarchy

Thread

Thread block

Par-thread private
ocal mamory

(=

AR

s

Perapplication
gobal mamory

[Nvidia, 2010]

24

SIMT

" |[lusion of many independent threads

" But for efficiency, programmer must try
and keep uthreads aligned in a SIMD
fashion

— Try and do unit-stride loads and store so memory
coalescing kicks in

— Avoid branch divergence so most instruction slots
execute useful work and are not masked off

25

Nvidia Fermi GF100 GPU

Host Ivleriscs

[Nvidia,

2010]

Mamaory Controllar

Fermi “Streaming
Multiprocessor” Core

T FPUsht T INT Unk

ot i
ENEGORKEEGOREEP
‘CE RN

NVIDIA Pascal Multithreaded GPU Core

Instruction Cache

Instruction Buffer

Register File (32,768 x 32-bif)

Register File (32,768 x 32-bit)

DP DP DP DP
Unit Unit Unit Unit
DP DP DP DP
Unit Unit Unit Unit
DP DP DP DP
Unit Unit Unit Unit
DP DP DP DP
Unit Unit Unit Unit
DP DP DbP DP
Unit Unit Unit Unit
DP DP DP DP
Unit Unit Unit Unit
DP DP DP DP
Unit Unit Unit Unit
DP DP DP DP
Unit Unit Unit Unit

Texture / L1 Cache

64KB Shared Memory

28

Fermi Dual-Issue Warp Scheduler

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit J Instruction Dispatch Unit
I A

Warp 8 instruction 11 Warp 8 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33

Warp 14 instruction 85 Warp 15 instruction 85

Warp 8 instruction 12

Warp 8 instruction 12

Warp 14 instruction 96 Warp 3 instruction 34

Warp 15 instruction 86

Warp 2 instruction 43

29

Important of Machine Learning for GPUs

249.58 usp+8.58 (3.56%) +

Closed: Mar 20, 7:58 PM EDT - Disclaimer
After hours 249.75 +0.17 (0.068%)

1 day 5 days 1 month 1 year 5 years Max

250 15.76 USD Dec 27, 2013

200
150
100
50 :
0= = —
2014 2015 2016 2017 2018

NVIDIA stock price 20x in 5 years
30

Apple A5X T T ——

Processor for
iPad v3 (2012) |- =

(preliminary)

* 12.90mmx 12.79mm
* 45nm technology

2o
St

'J:,’me&_%“m.w,w.wﬁ.w

[Source: Chipworks, 2012] 31

