
CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 18 Cache Coherence

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

Last Time in Lecture 17

§ RISC-V Standard Vectors
– Note slides from last year available on website to help with Lab 4

2

Bus Management

§ A “bus” is a collection of shared wires
– Newer “busses” use point-point links

§ Only one “master” can initiate a transaction by driving wires at
any one time

§ Multiple “slaves” can observe and conditionally respond to the
transaction on the wires

– slaves decode address on bus to see if they should respond (memory is most common slave)
– some masters can also act as slaves

§ Masters arbitrate for access with requests to bus “controller”
– Some busses only allow one master (in which case, it’s also the controller)

3

Master 0 Master 1 Slave 0 Slave 1Bus
Controller

Clock/Control

Address

Data

RequestGrant

Shared-Memory Multiprocessor

4

CPU1

Use snoopy mechanism to keep all processors’ view of
memory coherent

Memory
Bus

Main
Memory
(DRAM)

DMA

Snoopy
Cache

CPU2
Snoopy
Cache

CPU3
Snoopy
Cache

Disk

DMA Network

Bus Control

Snoopy Cache, Goodman 1983

§ Idea: Have cache watch (or snoop upon) other memory
transactions, and then “do the right thing”

§ Snoopy cache tags are dual-ported

5

Proc.

Cache

Snoopy read port
attached to Memory
Bus

Data
(lines)

Tags and
State

A

D

R/W

Used to drive Memory Bus
when Cache is Bus Master

A

R/W

Snoopy Cache-Coherence Protocols

§Write miss:
– the address is invalidated in all other caches before the

write is performed

§Read miss:
– if a dirty copy is found in some cache, a write-back is

performed before the memory is read

6

Cache State-Transition Diagram
The MSI protocol

7

M

S I

M: Modified
S: Shared
I: Invalid

Each cache line has state bits

Address tag
state
bits Write miss

(P1 gets line from memory)

Other processor
intent to write
(P1 writes back)

Read miss
(P1 gets line from memory)

P1
int

en
t to

 w
rite

Other processor
intent to write

Read by any
processor

P1 reads
or writes

Cache state in
processor P1

Other processor reads
(P1 writes back)

Two-Processor Example
(Reading and writing the same cache line)

8

M

S I

Write miss

Read
miss P 1

intent to
 write

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

Read
miss P 2

intent to
 write

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

P1 reads
P1 writes
P2 reads
P2 writes

P1 writes
P2 writes

P1 reads

P1 writes

Observation

§ If a line is in the M state then no other cache can have a
copy of the line!

§ Memory stays coherent, multiple differing copies cannot
exist

9

M

S I

Write miss

Other processor
intent to write

Read
miss

P1
int

en
t to

 w
rite

Other processor
intent to write

Read by any
processor

P1 reads
or writesOther processor reads

P1 writes back

MESI: An Enhanced MSI protocol
increased performance for private data

10

M E

S I

M: Modified Exclusive
E: Exclusive but unmodified
S: Shared
I: Invalid

Each cache line has a tag

Address tag
state
bits

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
processor

Other processor reads
P1 writes back

P1 read
P1 write
or read

Cache state in
processor P1

P1 intent to
write

Read miss,
not sharedOther

processor
reads

Other processor
intent to write, P1
writes back

Optimized Snoop with Level-2 Caches

§ Processors often have two-level caches
– small L1, large L2 (usually both on chip now)

§ Inclusion property: entries in L1 must be in L2
– Miss in L2 ⇒ Not present in L1
– Only if invalidation hits in L2 ⇒ probe and invalidate in L1

§ Snooping on L2 does not affect CPU-L1 bandwidth
11

Snooper Snooper Snooper Snooper

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

Intervention

12

When a read-miss for A occurs in cache-2,
a read request for A is placed on the bus

• Cache-1 needs to supply & change its state to shared
• The memory may respond to the request also!

Does memory know it has stale data?
Cache-1 needs to intervene through memory controller to supply
correct data to cache-2

cache-1A 200

CPU-Memory bus

CPU-1 CPU-2

cache-2

memory (stale data)A 100

False Sharing

13

state line addr data0 data1 ... dataN

A cache line contains more than one word

Cache-coherence is done at the line-level and not
word-level

Suppose M1 writes wordi and M2 writes wordk and
i ≠ k but both words have the same line address.

What can happen?

Performance of
Symmetric Multiprocessors (SMPs)

Cache performance is combination of:
§Uniprocessor cache miss traffic
§Traffic caused by communication

– Results in invalidations and subsequent cache misses

§Coherence misses
– Sometimes called a Communication miss
– 4th C of cache misses along with Compulsory,

Capacity, & Conflict.

14

Coherency Misses

§ True sharing misses arise from the
communication of data through the cache
coherence mechanism

– Invalidates due to 1st write to shared line
– Reads by another CPU of modified line in different cache
– Miss would still occur if line size were 1 word

§ False sharing misses when a line is invalidated
because some word in the line, other than the
one being read, is written into

– Invalidation does not cause a new value to be communicated, but
only causes an extra cache miss

– Line is shared, but no word in line is actually shared
Þ miss would not occur if line size were 1 word

15

Example: True v. False Sharing v. Hit?

16

Time P1 P2 True, False, Hit? Why?
1 Write x1

2 Read x2

3 Write x1

4 Write x2

5 Read x2

• Assume x1 and x2 in same cache line.
P1 and P2 both read x1 and x2 before.

True miss; invalidate x1 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss; x2 not writeable

True miss; invalidate x2 in P1

MP Performance 4-Processor Commercial Workload:
OLTP, Decision Support (Database), Search Engine

17

0
0.25
0.5

0.75

1
1.25
1.5

1.75
2

2.25

2.5
2.75

3
3.25

1 MB 2 MB 4 MB 8 MB

Cache size

M
em

or
y

cy
cl

es
 p

er
 in

st
ru

ct
io

n

Instruction
Capacity/Conflict
Cold
False Sharing
True Sharing

• Uniprocessor cache
misses
improve with
cache size increase
(Instruction,
Capacity/Conflict,
Compulsory)

• True sharing and
false sharing
unchanged going
from 1 MiB to 8 MiB
(L3 cache)

MP Performance 2MiB Cache Commercial Workload:
OLTP, Decision Support (Database), Search Engine

18

0

0.5

1

1.5

2

2.5

3

1 2 4 6 8
Processor count

M
em

or
y

cy
cl

es
 p

er
 in

st
ru

ct
io

n

Instruction
Conflict/Capacity
Cold
False Sharing
True Sharing

• True sharing,
false sharing
increase going
from 1 to 8 CPUs

CS152 Administrivia

§ Midterm 2 in class Wednesday April 17
– covers lectures 10-17, plus associated problem sets, labs, and readings

19

CS252

CS252 Administrivia

§ Monday April 15th Project Checkpoint, 11am-noon, 405 Soda
– Prepare 10-minute presentation on current status

20

Scaling Snoopy/Broadcast Coherence
§ When any processor gets a miss, must probe every other cache
§ Scaling up to more processors limited by:

– Communication bandwidth over bus
– Snoop bandwidth into tags

§ Can improve bandwidth by using multiple interleaved buses with
interleaved tag banks

– E.g, two bits of address pick which of four buses and four tag banks to use
– (e.g., bits 7:6 of address pick bus/tag bank, bits 5:0 pick byte in 64-byte
line)

§ Buses don’t scale to large number of connections, so can use
point-to-point network for larger number of nodes, but then
limited by tag bandwidth when broadcasting snoop requests.

§ Insight: Most snoops fail to find a match!

21

Scalable Approach: Directories

§ Every memory line has associated directory
information

– keeps track of copies of cached lines and their states
– on a miss, find directory entry, look it up, and communicate only

with the nodes that have copies if necessary
– in scalable networks, communication with directory and copies is

through network transactions

§ Many alternatives for organizing directory
information

22

Directory Cache Protocol

23

§ Assumptions: Reliable network, FIFO message delivery between
any given source-destination pair

CPU

Cache

Interconnection Network

Directory
Controller

DRAM Bank

Directory
Controller

DRAM Bank

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Directory
Controller

DRAM Bank

Directory
Controller

DRAM Bank

DataTagStat.

Each line in cache has
state field plus tag

DataStat. Directry

Each line in memory
has state field plus bit
vector directory with
one bit per processor

Cache States

§For each cache line, there are 4 possible states:
– C-invalid (= Nothing): The accessed data is not resident in

the cache.

– C-shared (= Sh): The accessed data is resident in the cache,
and possibly also cached at other sites. The data in memory
is valid.

– C-modified (= Ex): The accessed data is exclusively resident
in this cache, and has been modified. Memory does not
have the most up-to-date data.

– C-transient (= Pending): The accessed data is in a transient
state (for example, the site has just issued a protocol
request, but has not received the corresponding protocol
reply).

24

Home directory states
§For each memory line, there are 4 possible states:

– R(dir): The memory line is shared by the sites specified in dir
(dir is a set of sites). The data in memory is valid in this state.
If dir is empty (i.e., dir = ε), the memory line is not cached by
any site.

– W(id): The memory line is exclusively cached at site id, and has
been modified at that site. Memory does not have the most
up-to-date data.

– TR(dir): The memory line is in a transient state waiting for the
acknowledgements to the invalidation requests that the home
site has issued.

– TW(id): The memory line is in a transient state waiting for a
line exclusively cached at site id (i.e., in C-modified state) to
make the memory line at the home site up-to-date.

25

Read miss, to uncached or shared line

26

Directory
Controller

DRAM Bank

CPU

Cache

1
Load request at head of

CPU->Cache queue.

2Load misses in cache.

3Send ShReq
message to directory.

4
Message received at
directory controller.

5Access state and directory for line.
Line’s state is R, with zero or more

sharers.

6
Update directory by
setting bit for new
processor sharer.

7 Send ShRep message with
contents of cache line.

8 ShRep arrives at cache.

9

Update cache tag and data and
return load data to CPU.

Interconnection Network

Write miss, to read shared line

27

Directory
Controller

DRAM Bank

CPU

Cache

1
Store request at head of

CPU->Cache queue.

2Store misses in cache.

3Send ExReq message
to directory.

4
ExReq message received

at directory controller.

5
Access state and directory for

line. Line’s state is R, with some
set of sharers.

6 Send one InvReq
message to each sharer.

11

ExRep arrives
at cache

12

Update cache tag and
data, then store data

from CPU

Interconnection Network

CPU

Cache

7

InvReq arrives
at cache.8

Invalidate
cache line.

Send InvRep
to directory.

9InvRep received.
Clear down sharer bit.

10
When no more sharers,
send ExRep to cache.

Multiple sharers

CPU

Cache

CPU

Cache

Concurrency Management
§ Protocol would be easy to design if only one

transaction in flight across entire system
§ But, want greater throughput and don’t want to

have to coordinate across entire system
§ Great complexity in managing multiple

outstanding concurrent transactions to cache
lines

– Can have multiple requests in flight to same cache line!

28

Acknowledgements

§ This course is partly inspired by previous MIT 6.823 and
Berkeley CS252 computer architecture courses created by
my collaborators and colleagues:

– Arvind (MIT)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)

29

