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Last Time in Lecture 17

§ RISC-V Standard Vectors
– Note slides from last year available on website to help with Lab 4

2



Bus Management

§ A “bus” is a collection of shared wires
– Newer “busses” use point-point links

§ Only one “master” can initiate a transaction by driving wires at 
any one time

§ Multiple “slaves” can observe and conditionally respond to the 
transaction on the wires

– slaves decode address on bus to see if they should respond (memory is most common slave)
– some masters can also act as slaves

§ Masters arbitrate for access with requests to bus “controller”
– Some busses only allow one master (in which case, it’s also the controller)
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Shared-Memory Multiprocessor
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Snoopy Cache, Goodman 1983

§ Idea: Have cache watch (or snoop upon) other memory 
transactions, and then “do the right thing”

§ Snoopy cache tags are dual-ported
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Snoopy Cache-Coherence Protocols

§Write miss:  
– the address is invalidated in all other caches before the 

write is performed

§Read miss:  
– if a dirty copy is found in some cache, a write-back is 

performed before the memory is read  

6



Cache State-Transition Diagram
The MSI protocol
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Two-Processor Example
(Reading and writing the same cache line)
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Observation

§ If a line is in the M state then no other cache can have a 
copy of the line!

§ Memory stays coherent, multiple differing copies cannot 
exist
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MESI: An Enhanced MSI protocol
increased performance for private data
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Optimized Snoop with Level-2 Caches

§ Processors often have two-level caches
– small L1, large L2 (usually both on chip now)

§ Inclusion property: entries in L1 must be in L2
– Miss in L2 ⇒ Not present in L1
– Only if invalidation hits in L2 ⇒ probe and invalidate in L1

§ Snooping on L2 does not affect CPU-L1 bandwidth
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Intervention
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When a read-miss for A occurs in cache-2, 
a read request for A is placed on the bus

• Cache-1 needs to supply & change its state to shared
• The memory may respond to the request also!

Does memory know it has stale data?
Cache-1 needs to intervene through memory controller to supply 
correct data to cache-2
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False Sharing
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state     line addr data0 data1        ...            dataN

A cache line contains more than one word

Cache-coherence is done at the line-level and not 
word-level

Suppose M1 writes wordi and M2 writes wordk and
i ≠ k but both words have the same line address.

What can happen?



Performance of
Symmetric Multiprocessors (SMPs)

Cache performance is combination of:
§Uniprocessor cache miss traffic
§Traffic caused by communication 

– Results in invalidations and subsequent cache misses

§Coherence misses
– Sometimes called a Communication miss
– 4th C of cache misses along with Compulsory, 

Capacity, & Conflict.
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Coherency Misses

§ True sharing misses arise from the 
communication of data through the cache 
coherence mechanism

– Invalidates due to 1st write to shared line
– Reads by another CPU of modified line in different cache
– Miss would still occur if line size were 1 word

§ False sharing misses when a line is invalidated 
because some word in the line, other than the 
one being read, is written into

– Invalidation does not cause a new value to be communicated, but 
only causes an extra cache miss

– Line is shared, but no word in line is actually shared
Þ miss would not occur if line size were 1 word
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Example: True v. False Sharing v. Hit?
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Time P1 P2 True, False, Hit? Why?
1 Write x1

2 Read x2

3 Write x1

4 Write x2

5 Read x2

• Assume x1 and x2 in same cache line. 
P1 and P2 both read x1 and x2 before.

True miss; invalidate x1 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss; x2 not writeable

True miss; invalidate x2 in P1



MP Performance 4-Processor Commercial Workload:
OLTP, Decision Support (Database), Search Engine
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MP Performance 2MiB Cache Commercial Workload:
OLTP, Decision Support (Database), Search Engine
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CS152 Administrivia

§ Midterm 2 in class Wednesday April 17
– covers lectures 10-17, plus associated problem sets, labs, and readings
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CS252

CS252 Administrivia

§ Monday April 15th Project Checkpoint, 11am-noon, 405 Soda
– Prepare 10-minute presentation on current status
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Scaling Snoopy/Broadcast Coherence
§ When any processor gets a miss, must probe every other cache
§ Scaling up to more processors limited by:

– Communication bandwidth over bus
– Snoop bandwidth into tags

§ Can improve bandwidth by using multiple interleaved buses with 
interleaved tag banks

– E.g, two bits of address pick which of four buses and four tag banks to use 
– (e.g., bits 7:6 of address pick bus/tag bank, bits 5:0 pick byte in 64-byte 
line)

§ Buses don’t scale to large number of connections, so can use 
point-to-point network for larger number of nodes, but then 
limited by tag bandwidth when broadcasting snoop requests.

§ Insight: Most snoops fail to find a match!
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Scalable Approach: Directories

§ Every memory line has associated directory 
information

– keeps track of copies of cached lines and their states
– on a miss, find directory entry, look it up, and communicate only 

with the nodes that have copies if necessary
– in scalable networks, communication with directory and copies is 

through network transactions

§ Many alternatives for organizing directory 
information
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Directory Cache Protocol
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§ Assumptions: Reliable network, FIFO message delivery between 
any given source-destination pair
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Cache States

§For each cache line, there are 4 possible states:
– C-invalid (= Nothing): The accessed data is not resident in 

the cache.

– C-shared (= Sh): The accessed data is resident in the cache, 
and possibly also cached at other sites. The data in memory 
is valid.

– C-modified (= Ex): The accessed data is exclusively resident 
in this cache, and has been modified. Memory does not 
have the most up-to-date data.

– C-transient (= Pending): The accessed data is in a transient 
state (for example, the site has just issued a protocol 
request, but has not received the corresponding protocol 
reply).
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Home directory states
§For each memory line, there are 4 possible states:

– R(dir): The memory line is shared by the sites specified in dir
(dir is a set of sites). The data in memory is valid in this state.  
If dir is empty (i.e., dir = ε), the memory line is not cached by 
any site.

– W(id): The memory line is exclusively cached at site id, and has 
been modified at that site. Memory does not have the most 
up-to-date data.

– TR(dir): The memory line is in a transient state waiting for the 
acknowledgements to the invalidation requests that the home 
site has issued.

– TW(id): The memory line is in a transient state waiting for a 
line exclusively cached at site id (i.e., in C-modified state) to 
make the memory line at the home site up-to-date.
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Read miss, to uncached or shared line
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Write miss, to read shared line
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Concurrency Management
§ Protocol would be easy to design if only one 

transaction in flight across entire system
§ But, want greater throughput and don’t want to 

have to coordinate across entire system
§ Great complexity in managing multiple 

outstanding concurrent transactions to cache 
lines

– Can have multiple requests in flight to same cache line!
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