
CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 19 Memory Consistency Models

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

Last Time in Lecture 18
§ Cache coherence, making sure every store to memory is

eventually visible to any load to same memory address
§ Cache line states: M,S,I or M,E,S,I
§ Cache miss if tag not present, or line has wrong state

– Write to a shared line is handled as a miss

§ Snoopy coherence:
– Broadcast updates and probe all cache tags on any miss of any

processor, used to be bus connection now often broadcast over
point-to-point iinks

– Lower latency, but consumes lots of bandwidth on both the
communication bus and for probing the cache tags

§ Directory coherence:
– Structure keeps track of which caches can have copies of data,

and only send messages/probes to those caches
– Complicated to get right with all the possible overlapping cache

transactions
2

Synchronization

The need for synchronization arises
whenever there are concurrent processes
in a system (even in a uniprocessor system).

Two classes of synchronization:
§ Producer-Consumer: A consumer process

must wait until the producer process has
produced data

§ Mutual Exclusion: Ensure that only one
process uses a resource at a given time

3

producer

consumer

Shared
Resource

P1 P2

Shared Memory

Simple Producer-Consumer Example

sw xdata, (xdatap)
li xflag, 1
sw xflag, (xflagp)

spin: lw xflag, (xflagp)
beqz xflag, spin
lw xdata, (xdatap)

4

data
flag

Is this correct?

xflagp
xdatap

xflagp
xdatap

Initially flag=0

Producer
processor

Consumer
processor

Memory Consistency Model

§ Sequential ISA only specifies that each processor sees its
own memory operations in program order

§ Memory consistency model describes what values can be
returned by load instructions across multiple hardware
threads

§ Coherence describes the legal values a single memory
address should return

§ Consistency describes properties across all memory
addresses

5

Simple Producer-Consumer Example

sw xdata, (xdatap)
li xflag, 1
sw xflag, (xflagp)

spin: lw xflag, (xflagp)
beqz xflag, spin
lw xdata, (xdatap)

6

data
flagProducer Consumer

Can consumer read flag=1 before data
written by producer visible to consumer?

Initially flag=0

Sequential Consistency (SC)
A Memory Model

7

“ A system is sequentially consistent if the result of any
execution is the same as if the operations of all the
processors were executed in some sequential order, and the
operations of each individual processor appear in the order
specified by the program”

Leslie Lamport

Sequential Consistency = arbitrary order-preserving
interleaving of memory references of sequential programs

M

P P P P P P

Simple Producer-Consumer Example

sw xdata, (xdatap)
li xflag, 1
sw xflag, (xflagp)

spin: lw xflag, (xflagp)
beqz xflag, spin
lw xdata, (xdatap)

8

data
flagProducer Consumer

Initially flag =0

Dependencies from sequential ISA

Dependencies added by sequentially
consistent memory model

Most real machines are not SC

§ Only a few commercial ISAs require SC
– Neither x86 nor ARM are SC

§ Originally, architects developed uniprocessors with
optimized memory systems (e.g., store buffer)

§ When uniprocessors were lashed together to make
multiprocessors, resulting machines were not SC

§ Requiring SC would make simpler machines slower, or
requires adding complex hardware to retain performance

§ Architects/language designers/applications developers work
hard to explain weak memory behavior

§ Resulted in “weak” memory models with fewer guarantees

9

Store Buffer Optimization

§ Common optimization allows stores to be buffered while
waiting for access to shared memory

§ Load optimizations:
– Later loads can go ahead of buffered stores if to different address
– Later loads can bypass value from earlier buffered store if to same

address

10

CPU

Store
Buffer

Shared Memory

CPU

Store
Buffer

TSO example

§ Allows local buffering of stores by processor

11

Initially M[X] = M[Y] = 0

P1:
li x1, 1
sw x1, X
lw x2, Y

P2:
li x1, 1
sw x1, Y
lw x2, X

P1.x2 P2.x2 SC TSO

0 0 N Y
0 1 Y Y
1 0 Y Y
1 1 Y Y

Possible Outcomes

§ TSO is the strongest memory model in common use

Strong versus Weak
Memory Consistency Models

§ Stronger models provide more guarantees on ordering of
loads and stores across different hardware threads

– Easier ISA-level programming model
– Can require more hardware to ensure orderings (e.g., MIPS R10K

was SC, with hardware to speculate on load/stores and squash
when ordering violations detected across cores)

§ Weaker models provide fewer guarantees
– Much more complex ISA-level programming model

• Extremely difficult to understand, even for experts
– Simpler to achieve high performance, as weaker models allow

many reorderings to be exposed to software
– Additional instructions (fences) are provided to allow software to

specify which orderings are required

12

Fences in Producer-Consumer Example

sd xdata, (xdatap)
li xflag, 1
fence w,w //Write-write fence
sd xflag, (xflagp)

spin: ld xflag, (xflagp)
beqz xflag, spin
fence r,r // Read-read fence
ld xdata, (xdatap)

13

data
flagProducer Consumer

Initially flag =0

CS152 Administrivia

§ Midterm 2 in class Wednesday April 17
– covers lectures 10-17, plus associated problem sets, labs, and

readings

§ Lab 4 due Friday April 19
§ Lab 5 out on Friday, covered in Section

14

CS252

CS252 Administrivia

§ Will try to schedule makeup slot for class readings

15

Range of Memory Consistency Models

§ SC “Sequential Consistency”
– MIPS R10K

§ TSO “Total Store Order”
– processor can see its own writes before others do (store buffer)
– IBM-370 TSO, x86 TSO, SPARC TSO (default), RISC-V RVTSO (optional)

§ Weak, multi-copy-atomic memory models
– all processors see writes by another processor in same order
– Revised ARM v8 memory model
– RISC-V RVWMO, baseline weak memory model for RISC-V

§ Weak, non-multi-copy-atomic memory models
– processors can see another’s writes in different orders
– ARM v7, original ARM v8
– IBM POWER
– Digital Alpha
– Recent consensus is that this appears to be too weak

16

Multi-Copy Atomic models

§ Each hardware thread must view its own memory operations
in program order, but can buffer these locally and reorder
accesses around the buffer

§ But once a local store is made visible to one other hardware
thread in system, all other hardware threads must also be able
to observe it (this is what is meant by “atomic”)

17

CPU

Buffer

Shared Memory

CPU

Buffer
Point of global visibility

Hierarchical Shared Buffering

§ Common in large systems to have shared intermediate buffers
on path between CPUs and global memory

§ Potential optimization is to allow some CPUs see some writes
by a CPU before other CPUs

§ Shared memory stores are not seen to happen atomically by
other threads (non multi-copy atomic)

18

CPU

Intermediate
Buffer

Shared Memory

CPU CPU

Intermediate
Buffer

CPU

CS252

Non-Multi-Copy Atomic

§ In general, Non-MCA is very difficult to reason about
§ Software in one thread cannot assume all data it sees is

visible to other threads, so how to share data structures?
§ Adding local fences to require ordering of each thread’s

accesses is insufficient – need a more global memory
barrier to ensure all writes are made visible

19

Initially M[X] = M[Y] = 0

P1:
li x1, 1
sw x1, X

P2:
lw x1, X
sw x1, Y

Can P3.x1 = 1, and P3.x2 = 0 ?

P3:
lw x1, Y
fence r,r
lw x2, X

Relaxed Memory Models

§ Not all dependencies assumed by SC are supported, and
software has to explicitly insert additional dependencies were
needed

§ Which dependencies are dropped depends on the particular
memory model

– IBM370, TSO, PSO, WO, PC, Alpha, RMO, …

– Some ISAs allow several memory models, some machines have
switchable memory models

§ How to introduce needed dependencies varies by system
– Explicit FENCE instructions (sometimes called sync or memory barrier

instructions)

– Implicit effects of atomic memory instructions

How on earth are programmers supposed to work with this????

20

But compilers reorder too!

§ Compiler can reorder/remove memory operations:
– Instruction scheduling, move loads before stores if to different

address
– Register allocation, cache load value in register, don’t check

memory

§ Prohibiting these optimizations would result in very poor
performance

21

//Producer code
*datap = x/y;
*flagp = 1;

//Consumer code
while (!*flagp)

;
d = *datap;

Language-Level Memory Models

§ Programming languages have memory models too

§ Hide details of each ISA’s memory model underneath
language standard

– c.f. C function declarations versus ISA-specific subroutine linkage
convention

§ Language memory models: C/C++, Java

§ Describe legal behaviors of threaded code in each
language and what optimizations are legal for compiler to
make

§ E.g., C11/C++11: atomic_load(memory_order_seq_cst)
maps to RISC-V fence rw,rw; lw; fence r,rw

22

Release Consistency

§ Observation that consistency only matters when
processes communicate data

§ Only need to have consistent view when one process
shares its updates to other processes

§ Other processes only need to ensure they receive updates
after they acquire access to shared data

23

Release

Acquire

Critical

Release

Acquire
CriticalOther

Code

Other
Code

P1 P2

Ensure critical
section updates
visible before
release visible Ensure acquire

happened before
critical section
reads data

Release Consistency Adopted

§ Memory model for C/C++ and Java uses release
consistency

§ Programmer has to identify synchronization operations,
and if all data accesses are protected by synchronization,
appears like SC to programmer

§ ARM v8.1 and RISC-V ISA adopt release consistency
semantics on AMOs

24

Acknowledgements

§ This course is partly inspired by previous MIT 6.823 and
Berkeley CS252 computer architecture courses created by
my collaborators and colleagues:

– Arvind (MIT)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)

25

