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Last Time in Lecture 18
§ Cache coherence, making sure every store to memory is 

eventually visible to any load to same memory address
§ Cache line states: M,S,I or M,E,S,I
§ Cache miss if tag not present, or line has wrong state

– Write to a shared line is handled as a miss

§ Snoopy coherence:
– Broadcast updates and probe all cache tags on any miss of any 

processor, used to be bus connection now often broadcast over 
point-to-point iinks

– Lower latency, but consumes lots of bandwidth on both the 
communication bus and for probing the cache tags

§ Directory coherence:
– Structure keeps track of which caches can have copies of data, 

and only send messages/probes to those caches
– Complicated to get right with all the possible overlapping cache 

transactions
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Synchronization

The need for synchronization arises 
whenever there are concurrent processes 
in a system (even in a uniprocessor system).

Two classes of synchronization:
§ Producer-Consumer: A consumer process 

must wait until the producer process has 
produced data

§ Mutual Exclusion: Ensure that only one 
process uses a resource at a given time
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Shared Memory

Simple Producer-Consumer Example

sw xdata, (xdatap)
li xflag, 1
sw xflag, (xflagp)

spin: lw xflag, (xflagp)
beqz xflag, spin
lw xdata, (xdatap)
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Memory Consistency Model

§ Sequential ISA only specifies that each processor sees its 
own memory operations in program order

§ Memory consistency model describes what values can be 
returned by load instructions across multiple hardware 
threads

§ Coherence describes the legal values a single memory 
address should return

§ Consistency describes properties across all memory 
addresses
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Simple Producer-Consumer Example

sw xdata, (xdatap)
li xflag, 1
sw xflag, (xflagp)

spin: lw xflag, (xflagp)
beqz xflag, spin
lw xdata, (xdatap)
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Sequential Consistency (SC)
A Memory Model
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“ A system is sequentially consistent if the result of any 
execution is the same as if the operations of all the 
processors were executed in some sequential order, and the 
operations of each individual processor appear in the order 
specified by the program”

Leslie Lamport

Sequential Consistency = arbitrary order-preserving 
interleaving of memory references of sequential programs
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Simple Producer-Consumer Example

sw xdata, (xdatap)
li xflag, 1
sw xflag, (xflagp)

spin: lw xflag, (xflagp)
beqz xflag, spin
lw xdata, (xdatap)
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Most real machines are not SC

§ Only a few commercial ISAs require SC
– Neither x86 nor ARM are SC

§ Originally, architects developed uniprocessors with 
optimized memory systems (e.g., store buffer)

§ When uniprocessors were lashed together to make 
multiprocessors, resulting machines were not SC

§ Requiring SC would make simpler machines slower, or 
requires adding complex hardware to retain performance

§ Architects/language designers/applications developers work 
hard to explain weak memory behavior

§ Resulted in “weak” memory models with fewer guarantees
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Store Buffer Optimization

§ Common optimization allows stores to be buffered while 
waiting for access to shared memory

§ Load optimizations:
– Later loads can go ahead of buffered stores if to different address
– Later loads can bypass value from earlier buffered store if to same 

address
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TSO example

§ Allows local buffering of stores by processor
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Initially M[X] = M[Y] = 0

P1:
li x1, 1
sw x1, X
lw x2, Y

P2:
li x1, 1
sw x1, Y
lw x2, X

P1.x2 P2.x2 SC TSO

0 0 N Y
0 1 Y Y
1 0 Y Y
1 1 Y Y

Possible Outcomes

§ TSO is the strongest memory model in common use



Strong versus Weak
Memory Consistency Models

§ Stronger models provide more guarantees on ordering of 
loads and stores across different hardware threads

– Easier ISA-level programming model
– Can require more hardware to ensure orderings (e.g., MIPS R10K 

was SC, with hardware to speculate on load/stores and squash 
when ordering violations detected across cores)

§ Weaker models provide fewer guarantees
– Much more complex ISA-level programming model

• Extremely difficult to understand, even for experts
– Simpler to achieve high performance, as weaker models allow 

many reorderings to be exposed to software
– Additional instructions (fences) are provided to allow software to 

specify which orderings are required
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Fences in Producer-Consumer Example

sd xdata, (xdatap)
li xflag, 1
fence w,w //Write-write fence
sd xflag, (xflagp)

spin: ld xflag, (xflagp)
beqz xflag, spin
fence r,r // Read-read fence
ld xdata, (xdatap)
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CS152 Administrivia

§ Midterm 2 in class Wednesday April 17
– covers lectures 10-17, plus associated problem sets, labs, and 

readings

§ Lab 4 due Friday April 19
§ Lab 5 out on Friday, covered in Section
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CS252

CS252 Administrivia

§ Will try to schedule makeup slot for class readings
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Range of Memory Consistency Models

§ SC “Sequential Consistency”
– MIPS R10K

§ TSO “Total Store Order”
– processor can see its own writes before others do (store buffer)
– IBM-370 TSO, x86 TSO, SPARC TSO (default), RISC-V RVTSO (optional)

§ Weak, multi-copy-atomic memory models
– all processors see writes by another processor in same order
– Revised ARM v8 memory model
– RISC-V RVWMO, baseline weak memory model for RISC-V

§ Weak, non-multi-copy-atomic memory models
– processors can see another’s writes in different orders
– ARM v7, original ARM v8
– IBM POWER
– Digital Alpha
– Recent consensus is that this appears to be too weak
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Multi-Copy Atomic models

§ Each hardware thread must view its own memory operations 
in program order, but can buffer these locally and reorder 
accesses around the buffer

§ But once a local store is made visible to one other hardware 
thread in system, all other hardware threads must also be able 
to observe it (this is what is meant by “atomic”)
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Hierarchical Shared Buffering

§ Common in large systems to have shared intermediate buffers 
on path between CPUs and global memory

§ Potential optimization is to allow some CPUs see some writes 
by a CPU before other CPUs

§ Shared memory stores are not seen to happen atomically by 
other threads (non multi-copy atomic)
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CS252

Non-Multi-Copy Atomic

§ In general, Non-MCA is very difficult to reason about
§ Software in one thread cannot assume all data it sees is 

visible to other threads, so how to share data structures?
§ Adding local fences to require ordering of each thread’s 

accesses is insufficient – need a more global memory 
barrier to ensure all writes are made visible
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Initially M[X] = M[Y] = 0

P1:
li x1, 1
sw x1, X

P2:
lw x1, X
sw x1, Y

Can P3.x1 = 1, and P3.x2 = 0 ?

P3:
lw x1, Y
fence r,r
lw x2, X



Relaxed Memory Models

§ Not all dependencies assumed by SC are supported, and 
software has to explicitly insert additional dependencies were 
needed

§ Which dependencies are dropped depends on the particular 
memory model

– IBM370, TSO, PSO, WO, PC, Alpha, RMO, …

– Some ISAs allow several memory models, some machines have 
switchable memory models

§ How to introduce needed dependencies varies by system
– Explicit FENCE instructions (sometimes called sync or memory barrier 

instructions)

– Implicit effects of atomic memory instructions

How on earth are programmers supposed to work with this????

20



But compilers reorder too!

§ Compiler can reorder/remove memory operations:
– Instruction scheduling, move loads before stores if to different 

address
– Register allocation, cache load value in register, don’t check 

memory

§ Prohibiting these optimizations would result in very poor 
performance
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//Producer code
*datap = x/y;
*flagp = 1;

//Consumer code
while (!*flagp)

;
d = *datap;



Language-Level Memory Models

§ Programming languages have memory models too

§ Hide details of each ISA’s memory model underneath 
language standard

– c.f. C function declarations versus ISA-specific subroutine linkage 
convention

§ Language memory models: C/C++, Java

§ Describe legal behaviors of threaded code in each 
language and what optimizations are legal for compiler to 
make

§ E.g., C11/C++11:  atomic_load(memory_order_seq_cst) 
maps to RISC-V   fence rw,rw; lw; fence r,rw
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Release Consistency

§ Observation that consistency only matters when 
processes communicate data

§ Only need to have consistent view when one process 
shares its updates to other processes

§ Other processes only need to ensure they receive updates 
after they acquire access to shared data
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Release Consistency Adopted

§ Memory model for C/C++ and Java uses release 
consistency

§ Programmer has to identify synchronization operations, 
and if all data accesses are protected by synchronization, 
appears like SC to programmer

§ ARM v8.1 and RISC-V ISA adopt release consistency 
semantics on AMOs
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