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Recap: Lecture 19
§ Memory Consistency Model (MCM) describes what values are legal 

for a load to return
§ Sequential Consistency is most intuitive model, but almost never 

implemented in actual hardware
– Single global memory order where all individual thread memory 

operations appear in local program order
§ Stronger versus Weaker MCMs

– TSO is strongest common model, allows local hardware thread to see own stores 
before other hardware threads, but otherwise no visible reordering

– Weak multi-copy atomic model allows more reordering provided when a store is 
made visible to other threads, all threads can “see” at same time

– Very weak non-multi-copy atomic model allows stores from one thread to be 
observed in different orders by remote threads

§ Fences are used to enforce orderings within local thread, suffice for 
TSO and weak memory models

§ Heavyweight barriers are needed for non-multi-copy atomic, across 
multiple hardware threads
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Synchronization

The need for synchronization arises 
whenever there are concurrent processes 
in a system (even in a uniprocessor system).

Two classes of synchronization:
§ Producer-Consumer: A consumer process 

must wait until the producer process has 
produced data

§ Mutual Exclusion: Ensure that only one 
process uses a resource at a given time
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Memory

Simple Mutual-Exclusion Example
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// Both threads execute:
ld xdata, (xdatap)
add xdata, 1
sd xdata, (xdatap)

data
Thread 1 Thread 2

Is this correct?

xdatap xdatap



Mutual Exclusion Using Load/Store
(assume SC) 

5

A protocol based on two shared variables c1 and c2. 
Initially, both c1 and c2 are 0 (not busy)

What is wrong?

Process 1
...
c1=1;

L:  if c2=1 then go to L
< critical section>

c1=0;

Process 2
...
c2=1;

L:  if c1=1 then go to L
< critical section>

c2=0;

Deadlock!



Mutual Exclusion: second attempt
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To avoid deadlock, let a process give up the reservation 
(i.e. Process 1 sets c1 to 0) while waiting.

• Deadlock is not possible but with a low probability a 
livelock may occur.

• An unlucky process may never get to enter the critical 
section Þ starvation

Process 1
...

L:  c1=1;
if c2=1 then 

{ c1=0; go to L}
< critical section>

c1=0

Process 2
...

L:  c2=1;
if c1=1 then 

{ c2=0; go to L}
< critical section>

c2=0



A Protocol for Mutual Exclusion
T. Dekker, 1966
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Process 1
...
c1=1;
turn = 1;

L: if c2=1 & turn=1 
then go to L

< critical section>
c1=0;

A protocol based on 3 shared variables c1, c2 and turn. 
Initially, both c1 and c2 are 0 (not busy)

• turn = i ensures that only process i can wait 
• variables c1 and c2 ensure mutual exclusion

Solution for n processes was given by Dijkstra
and is quite tricky!

Process 2
...
c2=1;
turn = 2;

L: if c1=1 & turn=2 
then go to L

< critical section>
c2=0;



Analysis of Dekker’s Algorithm
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... Process 1
c1=1;
turn = 1;

L: if c2=1 & turn=1 
then go to L

< critical section>
c1=0;

... Process 2
c2=1;
turn = 2;

L: if c1=1 & turn=2 
then go to L

< critical section>
c2=0;

S
ce

na
ri
o 
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... Process 1
c1=1;
turn = 1;

L: if c2=1 & turn=1 
then go to L

< critical section>
c1=0;

... Process 2
c2=1;
turn = 2;

L: if c1=1 & turn=2 
then go to L

< critical section>
c2=0;

S
ce

na
ri
o 
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ISA Support for Mutual-Exclusion Locks

§ Regular loads and stores in SC model (plus fences in 
weaker model) sufficient to implement mutual exclusion, 
but code is inefficient and complex

§ Therefore, atomic read-modify-write (RMW) instructions 
added to ISAs to support mutual exclusion

§ Many forms of atomic RMW instruction possible, some 
simple examples:

– Test and set (reg_x = M[a]; M[a]=1)
– Swap (reg_x=M[a]; M[a] = reg_y)
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Release Lock

Acquire Lock

Critical Section

Memory

Lock for Mutual-Exclusion Example

// Both threads execute:

li xone, 1

spin: amoswap xlock, xone, (xlockp)

bnez xlock, spin

ld xdata, (xdatap)

add xdata, 1

sd xdata, (xdatap)

sd x0, (xlockp)
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data
Thread 1 Thread 2
xdatap xdatap

lock
xlockp xlockp

Assumes SC memory model



Release Lock

Acquire Lock

Critical Section

Memory

Lock for Mutual-Exclusion with Relaxed 
MM
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// Both threads execute:
li xone, 1

spin: amoswap xlock, xone, (xlockp)
bnez xlock, spin
fence r,rw
ld xdata, (xdatap)
add xdata, 1
sd xdata, (xdatap)
fence rw,w
sd x0, (xlockp)

data
Thread 1 Thread 2
xdatap xdatap

lock
xlockp xlockp



CS152 Administrivia

§ PS 5 due on Wednesday
§ Lab 5 due on Friday
§ Final exam, Tuesday May 14, 8am-11am, 306 Soda
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CS252

CS252 Administrivia

§ Final Project Presentations May 8th, 2:30-5pm, 511 Soda
§ 20-minute presentation, plus Q&A time
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RISC-V Atomic Memory Operations

§ Atomic Memory Operations (AMOs) have two ordering 
bits:

– Acquire (aq)
– Release (rl)

§ If both clear, no additional ordering implied
§ If aq set, then AMO “happens before” any following loads 

or stores
§ If rl set, then AMO “happens after” any earlier loads or 

stores
§ If both aq and rl set, then AMO happens in program order
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Release Lock

Acquire Lock

Critical Section

Memory

Lock for Mutual-Exclusion using RISC-V AMO
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// Both threads execute:
li xone, 1

spin: amoswap.w.aq xlock, xone, (xlockp)
bnez xlock, spin
ld xdata, (xdatap)
add xdata, 1
sd xdata, (xdatap)
amoswap.w.rl x0, x0, (xlockp)

data
Thread 1 Thread 2
xdatap xdatap

lock
xlockp xlockp



RISC-V FENCE versus AMO.aq/rl
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sd x1, (a1) # Unrelated store
ld x2, (a2) # Unrelated load
li t0, 1

again:
amoswap.w.aq t0, t0, (a0)
bnez t0, again
# …
# critical section
# …
amoswap.w.rl x0, x0, (a0)
sd x3, (a3) # Unrelated store
ld x4, (a4) # Unrelated load

sd x1, (a1) # Unrelated store
ld x2, (a2) # Unrelated load
li t0, 1

again:
amoswap.w t0, t0, (a0)
fence r, rw
bnez t0, again
# …
# critical section
# …
fence rw, w
amoswap.w x0, x0, (a0)
sd x3, (a3) # Unrelated store
ld x4, (a4) # Unrelated load

AMOs only order the AMO w.r.t. other loads/stores/AMOs

FENCEs order every load/store/AMO before/after FENCE



Executing Critical Sections without Locks

§ If a software thread is descheduled after taking lock, other 
threads cannot make progress inside critical section

§ “Non-blocking” synchronization allows critical sections to 
execute atomically without taking a lock
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Nonblocking Synchronization
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Compare&Swap(m), Rt, Rs:
if (Rt==M[m])

then M[m]=Rs;
Rs=Rt ;
status ¬ success;

else status ¬ fail;

try:  Load Rhead, (head)
spin: Load Rtail, (tail)

if Rhead==Rtail goto spin
Load R, (Rhead)
Rnewhead = Rhead+1
Compare&Swap(head), Rhead, Rnewhead
if (status==fail) goto try
process(R)

status is an
implicit 
argument 



Compare-and-Swap Issues

§ Compare and Swap is a complex instruction
– Three source operands: address, comparand, new value
– One return value: success/fail or old value

§ ABA problem
– Load(A), Y=process(A), success=CAS(A,Y)
– What if different task switched A to B then back to A before 

process() finished?

§ Add a counter, and make CAS access two words
§ Double Compare and Swap

– Five source operands: one address, two comparands, two values
– Load(<A1,A2>), Z=process(A1), success=CAS(<A1,A2>,<Y,A2+1>)
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Load-reserve & Store-conditional

20

Special register(s) to hold reservation flag and address, 
and the outcome of store-conditional

try:  Load-reserve Rhead, (head)
spin: Load Rtail, (tail)

if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead = Rhead + 1
Store-conditional (head), Rhead
if (status==fail) goto try
process(R)

Load-reserve R, (m):
<flag, adr> ¬ <1, m>; 
R ¬ M[m];

Store-conditional (m), R:
if <flag, adr> == <1, m> 
then  cancel other procs’ 

reservation on m;
M[m] ¬ R;  
status ¬ succeed;

else status ¬ fail;



Load-Reserved/Store-Conditional using 
MESI Caches
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CPU1

Memory
Bus

Main 
Memory 
(DRAM)

DMA

Snoopy 
Cache

CPU2
Snoopy 
Cache

CPU3
Snoopy 
Cache

Disk

DMA Network

Bus Control

Load-Reserved ensures line in cache in Exclusive/Modified state

Store-Conditional succeeds if line still in Exclusive/Modified state



LR/SC Issues

§ LR/SC does not suffer from ABA problem, as any access to 
addresses will clear reservation regardless of value

– CAS only checks stored values not intervening accesses

§ LR/SC non-blocking synchronization can livelock between 
two competing processors

– CAS guaranteed to make forward progress, as CAS only fails if 
some other thread succeeds

§ RISC-V LR/SC makes guarantee of forward progress 
provided code inside LR/SC pair obeys certain rules

– Can implement CAS inside RISC-V LR/SC

22



RISC-V Atomic Instructions

§ Non-blocking “Fetch-and-op” with guaranteed forward 
progress for simple operations, returns original memory 
value in register

§ AMOSWAP M[a] = d
§ AMOADD  M[a] += d
§ AMOAND M[a] &= d
§ AMOOR M[a] |= d
§ AMOXOR M[a] ^= d
§ AMOMAX M[a] = max(M[a],d)   # also, unsigned AMOMAXU

§ AMOMIN M[a] = min(M[a],d) # also, unsigned AMOMINU
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CS252

Transactional Memory

§ Proposal from Knight [‘80s], and Herlihy and Moss [’93]
XBEGIN
MEM-OP1
MEM-OP2
MEM-OP3
XEND

§ Operations between XBEGIN instruction and XEND 
instruction either all succeed or are all squashed

§ Access by another thread to same addresses, cause 
transaction to be squashed

§ More flexible than CAS or LR/SC
§ Commercially deployed on IBM POWER8 and Intel TSX 

extension
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