CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 22 Synchronization

Krste Asanovic
Electrical Engineering and Computer Sciences
University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152



Recap: Lecture 19

Memory Consistency Model (MCM) describes what values are legal
for a load to return

Sequential Consistency is most intuitive model, but almost never
implemented in actual hardware

— Single global memory order where all individual thread memory
operations appear in local program order

Stronger versus Weaker MCMs

— TSO is strongest common model, allows local hardware thread to see own stores
before other hardware threads, but otherwise no visible reordering

— Weak multi-copy atomic model allows more reordering provided when a store is
made visible to other threads, all threads can “see” at same time

— Very weak non-multi-copy atomic model allows stores from one thread to be
observed in different orders by remote threads

Fences are used to enforce orderings within local thread, suffice for
TSO and weak memory models

Heavyweight barriers are needed for non-multi-copy atomic, across
multiple hardware threads



Synchronization

The need for synchronization arises
whenever there are concurrent processes

in a system (even in a uniprocessor system).

Two classes of synchronization:

» Producer-Consumer: A consumer process

must wait until the producer process has
produced data

» Mutual Exclusion: Ensure that only one
process uses a resource at a given time

!

producer

~.

consumer

!

P1 P2

Shared
Resource



Simple Mutual-Exclusion Example

Thread 1

xdatap

Thread 2
xdatap

> data |[~—_

Memory

// Both threads execute:
1d xdata, (xdatap)

add xdata, 1

sd xdata, (xdatap)

Is this correct?



Mutual Exclusion Using Load/Store
(assume SC)

A protocol based on two shared variables c1 and c2.
Initially, both c1 and c2 are 0 (not busy)

Process 1 Process 2
c.1“=1; c2=1;
L: ifc2=1 then go to L L: ifcl=1then go to L
< critical section> < critical section>
c1=0; c2=0;

What is wrong? Deadlock!



Mutual Exclusion: second attempt

To avoid deadlock, let a process give up the reservation
(i.e. Process 1 sets c1 to 0) while waiting.

Process 1 Process 2
L: cl=1; L: c2=1;
if c2=1 then if c1=1 then
{ c1=0; go to L} { c2=0; go to L}
< critical section> < critical section>
cl=0 c2=0

e Deadlock is not possible but with a low probability a
livelock may occur.

e An unlucky process may never get to enter the critical
section = starvation



A Protocol for Mutual Exclusion
T. Dekker, 1966

A protocol based on 3 shared variables c1, c2 and turn.
Initially, both c1 and c2 are 0 (not busy)

Process 1 Process 2
cl=1; c2=1;
turn = 1; turn = 2;
L: ifc2=1 & turn=1 L: ifcl=1 & turn=2
then go to L then go to L
< critical section> < critical section>
cl1=0; c2=0;

e turn = j ensures that only process i/ can wait
e variables cl1 and c2 ensure mutual exclusion
Solution for n processes was given by Dijkstra

and is quite tricky!




Scenario 1

Scenario 2

Analysis of Dekker’s Algorithm

Process 1
cl=1;
turn = 1;
L:ifc2=1 & turn=1
then go to L

< critical section>
cl=0;

Process 2
c2=1,
turn = 2;
L: ifcl=1 & turn=2
then go to L

< critical section>
c2=0;

Process 1
cl=1;
turn = 1;
L:ifc2=1 & turn=1
then go to L

< critical section>
cl=0;

Process 2
c2=1;
turn = 2;
L: ifcl=1 & turn=2
then go to L

< critical section>
c2=0;




ISA Support for Mutual-Exclusion Locks

= Regular loads and stores in SC model (plus fences in
weaker model) sufficient to implement mutual exclusion,
but code is inefficient and complex

" Therefore, atomic read-modify-write (RMW) instructions
added to ISAs to support mutual exclusion

= Many forms of atomic RMW instruction possible, some
simple examples:

— Test and set (reg_x = M[a]; M[a]=1)
— Swap (reg_x=M|[a]; M[a] = reg_y)



Lock for Mutual-Exclusion Example

xlockp

Thread 1
xdatap

xlockp

Thread 2
xdatap

— lock
> data

K
<

Memory

// Both threads execute:

li xone, 1

spin: | amoswap xlock, xone, (xlockp)
. Acquire Lock
bnez xlock, spin

1d xdata, (xdatap)
add xdata, 1 Critical Section
sd xdata, (xdatap)

sd x0, (xlockp) Release Lock

Assumes SC memory model

10



Lock for Mutual-Exclusion with Relaxed
MM

xlockp

Thread 1
xdatap

xlockp

Thread 2
xdatap

— lock
> data

K
<

Memory

// Both threads execute:
li xone, 1

Spin: amoswap Xlock, xone, (X1OCKp)

bnez xlock, spin Acquire Lock

fence r,rw

1d xdata, (xdatap)

add xdata, 1 Critical Section
sd xdata, (xdatap)

fence rw,w

Release Lock
sd x0, (xlockp)




CS152 Administrivia

" PS5 due on Wednesday
" Lab 5 due on Friday
" Final exam, Tuesday May 14, 8am-11am, 306 Soda

12



CS252 Administrivia

= Final Project Presentations May 8", 2:30-5pm, 511 Soda
= 20-minute presentation, plus Q&A time

CS252

13



RISC-V Atomic Memory Operations

= Atomic Memory Operations (AMOs) have two ordering
bits:
— Acquire (aq)
— Release (rl)
" |f both clear, no additional ordering implied

" |f ag set, then AMO “happens before” any following loads
or stores

" |If rl set, then AMO “happens after” any earlier loads or
stores

" |f both aq and rl set, then AMO happens in program order

14



Lock for Mutual-Exclusion using RISC-V AMO

xlockp

Thread 1
xdatap

xlockp

Thread 2
xdatap

— lock
> data

K
<

Memory

// Both threads execute:
li xone, 1

Spin: amoswap.w.aq Xlock, xone, (X1OCKp)

bnez xlock, spin Acquire Lock
1d xdata, (xdatap)
add xdata, 1 Critical Section

sd xdata, (xdatap)

amoswap.w.rl x0, x0, (xlockp) Release Lock

15



RISC-V FENCE versus AMO.aq/rl

sd x1, (al) # Unrelated store sd x1, (al) # Unrelated store
1d x2, (a2) # Unrelated load 1d x2, (a2) # Unrelated load
1i t0, 1 1i t0, 1
again: again:

amoswap.w.aq t0, t0, (ao0) amoswap.w t0, t0, (aO0)

g:_-bnez t0, again fence r, rw
.. bnez t0, again
# critical section ..

<L-.#." # critical section
amoswap.w.rl x0, x0, (a0) ..
sd x3, (a3) # Unrelated store fence rw, w
1d x4, (a4) # Unrelated load §; amoswap.w x0, x0, (a0)

sd x3, (a3) # Unrelated store
1d x4, (a4) # Unrelated load

AMOs only order the AMO w.r.t. other loads/stores/AMOs
FENCEs order every load/store/AMO before/after FENCE



Executing Critical Sections without Locks

" |f a software thread is descheduled after taking lock, other
threads cannot make progress inside critical section

" “Non-blocking” synchronization allows critical sections to
execute atomically without taking a lock

17



Nonblocking Synchronization

Compare&Swap(m), R;, R.:

if (Re==M[m])
then M[m]=R.;
Rs=R¢;

status « success;
else status « fail;

try: Load R;..q, (head)
spin: Load Ry, (tail)

if Rheaq==R¢4; goto spin

Load R/ (Rhead)
Nrenhesd = Nazer .

status is an
implicit
argument

Compare&Swap(head), Rheads Rnewhead

if (status==fail) goto try

process(R)

18



Compare-and-Swap Issues

= Compare and Swap is a complex instruction
— Three source operands: address, comparand, new value
— One return value: success/fail or old value

= ABA problem
— Load(A), Y=process(A), success=CAS(A,Y)

— What if different task switched A to B then back to A before
process() finished?

= Add a counter, and make CAS access two words
" Double Compare and Swap

— Five source operands: one address, two comparands, two values
— Load(<A1,A2>), Z=process(Al), success=CAS(<A1,A2>,<Y,A2+1>)

19



Load-reserve & Store-conditional

Special register(s) to hold reservation flag and address,
and the outcome of store-conditional

Load-reserve R, (m): Store-conditional (m), R:

if <flag, adr> == <1, m>
then cancel other procs’

reservation on m;

M[m] < R;

status <« succeed;
else status « fail;

Load-reserve Rpeaq, (head)

<flag, adr> <« <1, m>;
R« M[m];
try:
spin: Load Ry, (tail)

If Rhead==Rtail goto spin

Load R/ (Rhead)

Rhead = Rhead + 1
Store-conditional (head), Rhead
if (status==fail) goto try
process(R)

20



Load-Reserved/Store-Conditional using
MESI Caches

CPU,

CPU,

CPU,

Main
Memory
(DRAM)

DMA |<e—> Network

Memory
Bus
A
A —]-
Snoopy
> >
Cache
— Snoopy —
Cache
Snoopy
Cache —p
Bus Control [
\J

-

Load-Reserved ensures line in cache in Exclusive/Modified state

Store-Conditional succeeds if line still in Exclusive/Modified state

21



LR/SC Issues

= LR/SC does not suffer from ABA problem, as any access to
addresses will clear reservation regardless of value

— CAS only checks stored values not intervening accesses
» LR/SC non-blocking synchronization can livelock between
two competing processors

— CAS guaranteed to make forward progress, as CAS only fails if
some other thread succeeds

= RISC-V LR/SC makes guarantee of forward progress
provided code inside LR/SC pair obeys certain rules

— Can implement CAS inside RISC-V LR/SC

22



RISC-V Atomic Instructions

" Non-blocking “Fetch-and-op” with guaranteed forward
progress for simple operations, returns original memory
value in register

= AMOSWAP
= AMOADD
= AMOAND
= AMOOR

= AMOXOR

= AMOMAX
= AMOMIN

M

< < < < < Z

El
El
El
El
El
El
El

Q +
NN o
Q QO 4 QO

> —
I

= max(Ml[a],d) #also, unsigned AMOMAXU
= min(Mla],d) #also, unsigned AMOMINU

23



Transactional Memory

" Proposal from Knight [‘80s], and Herlihy and Moss ['93]
XBEGIN
MEM-OP1
MEM-OP2
MEM-OP3
XEND

= Operations between XBEGIN instruction and XEND
instruction either all succeed or are all squashed

= Access by another thread to same addresses, cause
transaction to be squashed

= More flexible than CAS or LR/SC

= Commercially deployed on IBM POWERS8 and Intel TSX
extension

CS252



Acknowledgements

" This course is partly inspired by previous MIT 6.823 and
Berkeley CS252 computer architecture courses created by
my collaborators and colleagues:

— Arvind (MIT)

— Joel Emer (Intel/MIT)

— James Hoe (CMU)

— John Kubiatowicz (UCB)
— David Patterson (UCB)

25



