
CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 22 Synchronization

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

Recap: Lecture 19
§ Memory Consistency Model (MCM) describes what values are legal

for a load to return
§ Sequential Consistency is most intuitive model, but almost never

implemented in actual hardware
– Single global memory order where all individual thread memory

operations appear in local program order
§ Stronger versus Weaker MCMs

– TSO is strongest common model, allows local hardware thread to see own stores
before other hardware threads, but otherwise no visible reordering

– Weak multi-copy atomic model allows more reordering provided when a store is
made visible to other threads, all threads can “see” at same time

– Very weak non-multi-copy atomic model allows stores from one thread to be
observed in different orders by remote threads

§ Fences are used to enforce orderings within local thread, suffice for
TSO and weak memory models

§ Heavyweight barriers are needed for non-multi-copy atomic, across
multiple hardware threads

2

Synchronization

The need for synchronization arises
whenever there are concurrent processes
in a system (even in a uniprocessor system).

Two classes of synchronization:
§ Producer-Consumer: A consumer process

must wait until the producer process has
produced data

§ Mutual Exclusion: Ensure that only one
process uses a resource at a given time

3

producer

consumer

Shared
Resource

P1 P2

Memory

Simple Mutual-Exclusion Example

4

// Both threads execute:
ld xdata, (xdatap)
add xdata, 1
sd xdata, (xdatap)

data
Thread 1 Thread 2

Is this correct?

xdatap xdatap

Mutual Exclusion Using Load/Store
(assume SC)

5

A protocol based on two shared variables c1 and c2.
Initially, both c1 and c2 are 0 (not busy)

What is wrong?

Process 1
...
c1=1;

L: if c2=1 then go to L
< critical section>

c1=0;

Process 2
...
c2=1;

L: if c1=1 then go to L
< critical section>

c2=0;

Deadlock!

Mutual Exclusion: second attempt

6

To avoid deadlock, let a process give up the reservation
(i.e. Process 1 sets c1 to 0) while waiting.

• Deadlock is not possible but with a low probability a
livelock may occur.

• An unlucky process may never get to enter the critical
section Þ starvation

Process 1
...

L: c1=1;
if c2=1 then

{ c1=0; go to L}
< critical section>

c1=0

Process 2
...

L: c2=1;
if c1=1 then

{ c2=0; go to L}
< critical section>

c2=0

A Protocol for Mutual Exclusion
T. Dekker, 1966

7

Process 1
...
c1=1;
turn = 1;

L: if c2=1 & turn=1
then go to L

< critical section>
c1=0;

A protocol based on 3 shared variables c1, c2 and turn.
Initially, both c1 and c2 are 0 (not busy)

• turn = i ensures that only process i can wait
• variables c1 and c2 ensure mutual exclusion

Solution for n processes was given by Dijkstra
and is quite tricky!

Process 2
...
c2=1;
turn = 2;

L: if c1=1 & turn=2
then go to L

< critical section>
c2=0;

Analysis of Dekker’s Algorithm

8

... Process 1
c1=1;
turn = 1;

L: if c2=1 & turn=1
then go to L

< critical section>
c1=0;

... Process 2
c2=1;
turn = 2;

L: if c1=1 & turn=2
then go to L

< critical section>
c2=0;

S
ce

na
ri
o

1

... Process 1
c1=1;
turn = 1;

L: if c2=1 & turn=1
then go to L

< critical section>
c1=0;

... Process 2
c2=1;
turn = 2;

L: if c1=1 & turn=2
then go to L

< critical section>
c2=0;

S
ce

na
ri
o

2

ISA Support for Mutual-Exclusion Locks

§ Regular loads and stores in SC model (plus fences in
weaker model) sufficient to implement mutual exclusion,
but code is inefficient and complex

§ Therefore, atomic read-modify-write (RMW) instructions
added to ISAs to support mutual exclusion

§ Many forms of atomic RMW instruction possible, some
simple examples:

– Test and set (reg_x = M[a]; M[a]=1)
– Swap (reg_x=M[a]; M[a] = reg_y)

9

Release Lock

Acquire Lock

Critical Section

Memory

Lock for Mutual-Exclusion Example

// Both threads execute:

li xone, 1

spin: amoswap xlock, xone, (xlockp)

bnez xlock, spin

ld xdata, (xdatap)

add xdata, 1

sd xdata, (xdatap)

sd x0, (xlockp)

10

data
Thread 1 Thread 2
xdatap xdatap

lock
xlockp xlockp

Assumes SC memory model

Release Lock

Acquire Lock

Critical Section

Memory

Lock for Mutual-Exclusion with Relaxed
MM

11

// Both threads execute:
li xone, 1

spin: amoswap xlock, xone, (xlockp)
bnez xlock, spin
fence r,rw
ld xdata, (xdatap)
add xdata, 1
sd xdata, (xdatap)
fence rw,w
sd x0, (xlockp)

data
Thread 1 Thread 2
xdatap xdatap

lock
xlockp xlockp

CS152 Administrivia

§ PS 5 due on Wednesday
§ Lab 5 due on Friday
§ Final exam, Tuesday May 14, 8am-11am, 306 Soda

12

CS252

CS252 Administrivia

§ Final Project Presentations May 8th, 2:30-5pm, 511 Soda
§ 20-minute presentation, plus Q&A time

13

RISC-V Atomic Memory Operations

§ Atomic Memory Operations (AMOs) have two ordering
bits:

– Acquire (aq)
– Release (rl)

§ If both clear, no additional ordering implied
§ If aq set, then AMO “happens before” any following loads

or stores
§ If rl set, then AMO “happens after” any earlier loads or

stores
§ If both aq and rl set, then AMO happens in program order

14

Release Lock

Acquire Lock

Critical Section

Memory

Lock for Mutual-Exclusion using RISC-V AMO

15

// Both threads execute:
li xone, 1

spin: amoswap.w.aq xlock, xone, (xlockp)
bnez xlock, spin
ld xdata, (xdatap)
add xdata, 1
sd xdata, (xdatap)
amoswap.w.rl x0, x0, (xlockp)

data
Thread 1 Thread 2
xdatap xdatap

lock
xlockp xlockp

RISC-V FENCE versus AMO.aq/rl

16

sd x1, (a1) # Unrelated store
ld x2, (a2) # Unrelated load
li t0, 1

again:
amoswap.w.aq t0, t0, (a0)
bnez t0, again
…
critical section
…
amoswap.w.rl x0, x0, (a0)
sd x3, (a3) # Unrelated store
ld x4, (a4) # Unrelated load

sd x1, (a1) # Unrelated store
ld x2, (a2) # Unrelated load
li t0, 1

again:
amoswap.w t0, t0, (a0)
fence r, rw
bnez t0, again
…
critical section
…
fence rw, w
amoswap.w x0, x0, (a0)
sd x3, (a3) # Unrelated store
ld x4, (a4) # Unrelated load

AMOs only order the AMO w.r.t. other loads/stores/AMOs

FENCEs order every load/store/AMO before/after FENCE

Executing Critical Sections without Locks

§ If a software thread is descheduled after taking lock, other
threads cannot make progress inside critical section

§ “Non-blocking” synchronization allows critical sections to
execute atomically without taking a lock

17

Nonblocking Synchronization

18

Compare&Swap(m), Rt, Rs:
if (Rt==M[m])

then M[m]=Rs;
Rs=Rt ;
status ¬ success;

else status ¬ fail;

try: Load Rhead, (head)
spin: Load Rtail, (tail)

if Rhead==Rtail goto spin
Load R, (Rhead)
Rnewhead = Rhead+1
Compare&Swap(head), Rhead, Rnewhead
if (status==fail) goto try
process(R)

status is an
implicit
argument

Compare-and-Swap Issues

§ Compare and Swap is a complex instruction
– Three source operands: address, comparand, new value
– One return value: success/fail or old value

§ ABA problem
– Load(A), Y=process(A), success=CAS(A,Y)
– What if different task switched A to B then back to A before

process() finished?

§ Add a counter, and make CAS access two words
§ Double Compare and Swap

– Five source operands: one address, two comparands, two values
– Load(<A1,A2>), Z=process(A1), success=CAS(<A1,A2>,<Y,A2+1>)

19

Load-reserve & Store-conditional

20

Special register(s) to hold reservation flag and address,
and the outcome of store-conditional

try: Load-reserve Rhead, (head)
spin: Load Rtail, (tail)

if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead = Rhead + 1
Store-conditional (head), Rhead
if (status==fail) goto try
process(R)

Load-reserve R, (m):
<flag, adr> ¬ <1, m>;
R ¬ M[m];

Store-conditional (m), R:
if <flag, adr> == <1, m>
then cancel other procs’

reservation on m;
M[m] ¬ R;
status ¬ succeed;

else status ¬ fail;

Load-Reserved/Store-Conditional using
MESI Caches

21

CPU1

Memory
Bus

Main
Memory
(DRAM)

DMA

Snoopy
Cache

CPU2
Snoopy
Cache

CPU3
Snoopy
Cache

Disk

DMA Network

Bus Control

Load-Reserved ensures line in cache in Exclusive/Modified state

Store-Conditional succeeds if line still in Exclusive/Modified state

LR/SC Issues

§ LR/SC does not suffer from ABA problem, as any access to
addresses will clear reservation regardless of value

– CAS only checks stored values not intervening accesses

§ LR/SC non-blocking synchronization can livelock between
two competing processors

– CAS guaranteed to make forward progress, as CAS only fails if
some other thread succeeds

§ RISC-V LR/SC makes guarantee of forward progress
provided code inside LR/SC pair obeys certain rules

– Can implement CAS inside RISC-V LR/SC

22

RISC-V Atomic Instructions

§ Non-blocking “Fetch-and-op” with guaranteed forward
progress for simple operations, returns original memory
value in register

§ AMOSWAP M[a] = d
§ AMOADD M[a] += d
§ AMOAND M[a] &= d
§ AMOOR M[a] |= d
§ AMOXOR M[a] ^= d
§ AMOMAX M[a] = max(M[a],d) # also, unsigned AMOMAXU

§ AMOMIN M[a] = min(M[a],d) # also, unsigned AMOMINU

23

CS252

Transactional Memory

§ Proposal from Knight [‘80s], and Herlihy and Moss [’93]
XBEGIN
MEM-OP1
MEM-OP2
MEM-OP3
XEND

§ Operations between XBEGIN instruction and XEND
instruction either all succeed or are all squashed

§ Access by another thread to same addresses, cause
transaction to be squashed

§ More flexible than CAS or LR/SC
§ Commercially deployed on IBM POWER8 and Intel TSX

extension

24

Acknowledgements

§ This course is partly inspired by previous MIT 6.823 and
Berkeley CS252 computer architecture courses created by
my collaborators and colleagues:

– Arvind (MIT)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)

25

