
CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 23 I/O & Warehouse-Scale Computing

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

Last Time in Lecture 22
§ Implementing Mutual Exclusion synchronization is possible using

regular loads and stores, but is complicated an inefficient
§ Most architectures add atomic read-modify-write synchronization

primitives to support mutual-exclusion
§ Lock-based synchronization is susceptible to lock-owning thread being

descheduled while holding lock
§ Non-blocking synchronization tries to provide mutual exclusion

without holding a lock
– Compare-and-swap, makes forward progress but complex instruction

and susceptible to ABA problem
– Double-wide compare-and-swap prevents ABA problem but is now even

more complex instruction

§ Load-Reserved/Store-Conditional pair reduces instruction complexity
– Protects based on address not values, so not susceptible to ABA
– Can livelock, unless add forward progress guarantee

§ Transactional Memory is slowly entering commercial use
– Complex portability/compatibility story

2

(I/O) Input/Output

Computers useless without I/O
– Over time, literally thousands of forms of computer I/O: punch

cards to brain interfaces

Broad categories:
§ Secondary/Tertiary storage (flash/disk/tape)
§ Network (Ethernet, WiFi, Bluetooth, LTE)
§ Human-machine interfaces (keyboard, mouse,

touchscreen, graphics, audio, video, neural,…)
§ Printers (line, laser, inkjet, photo, 3D, …)
§ Sensors (process control, GPS, heartrate, …)
§ Actuators (valves, robots, car brakes, …)

Mix of I/O devices is highly application-dependent
3

Interfacing to I/O Devices

Two general strategies
§ Memory-mapped

– I/O devices appear as memory locations to processor
– Reads and writes to I/O device locations configure I/O and

transfer data (using either programmed I/O or DMA)

§ I/O channels
– Architecture specifies commands to execute I/O commands over

defined channels
– I/O channel structure can be layered over memory-mapped

device structure

§ In addition to data transfer, have to define
synchronization method

– Polling: CPU checks status bits
– Interrupts: Device interrupts CPU on event

4

Memory-Mapped I/O

§ Programmed I/O uses CPU to control I/O device using load
and store instructions, with address specifying device
register to access

– Load and store can have side effect on device

§ Usually, only privileged code can access I/O devices
directly, to provide secure multiprogramming

– System calls sometimes provided for application to open and
reserve a device for exclusive access

§ Processors provide “uncached” loads and stores to
prevent caching of device registers

– Usually indicated by bits in page table entries or by reserving
portions of physical address space

5

Simple I/O Bus Structure

§ Some range of physical addresses map to I/O bus devices
§ I/O bus bridge reduces loading on critical CPU-DRAM bus
§ Devices can be “slaves”, only responding to I/O bus requests
§ Devices can be “masters”, initiating I/O bus transfers

6

CPU

Caches

DRAM

I/O Bus
Bridge

Memory
Bus

I/O Bus

I/O
Device

#1

I/O
Device

#2

I/O
Device

#3

DMA (Direct Memory Access)

§ DMA engines offload CPU by autonomously transferring data
between I/O device and main memory. Interrupt/poll for done

– DMA programmed through memory-mapped registers
– Some systems use dedicated processors inside DMA engines

§ Often, many separate DMA engines in modern systems:
– Centralized in I/O bridge (usually supporting multiple concurrent

channels to different devices), works on slave-only I/O busses
– Directly attached to each peripheral (if I/O bus supports mastering)

7

CPU

Caches

DRAM

I/O Bus
Bridge

Memory
Bus

I/O Bus

I/O
Device

#1

I/O
Device

#2

I/O
Device

#3

DMA

DMA

More Complex Bus Structures

§ Match speed of I/O connection to device demands
– Special direct connection for graphics
– Fast I/O bus for disk drives, ethernet
– Slow I/O bus for keyboard, mouse, touchscreen

• Reduces load on fast I/O bus + less bus logic needed on device
8

CPU

Caches

DRAM

I/O Bus
BridgeMemory

Bus

Fast I/O Bus

I/O
Device

#1

I/O
Device

#3

Slow I/O Bus
Bridge

DMA

I/O
Device

#2

Slow I/O BusDMA

DMA

I/O
Device

#4

Graphics

DMA

Move from Parallel to Serial I/O Off-chip

9

CPU I/O
IF I/O 1 I/O 2

Central Bus
ArbiterShared Parallel Bus Wires

• Parallel bus clock rate limited by clock skew across long bus (~100MHz)
• High power to drive large number of loaded bus lines
• Central bus arbiter adds latency to each transaction, sharing limits throughput
• Expensive parallel connectors and backplanes/cables (all devices pay costs)
• Examples: VMEbus, Sbus, ISA bus, PCI, SCSI, IDE

CPU I/O
IF

I/O 1

I/O 2

Dedicated Point-to-point Serial Links
• Point-to-point links run at multi-gigabit speed using advanced clock/signal
encoding (requires lots of circuitry at each end)
• Lower power since only one well-behaved load
• Multiple simultaneous transfers
• Cheap cables and connectors (trade greater endpoint transistor cost for lower
physical wiring cost), customize bandwidth per device using multiple links in parallel
• Examples: Ethernet, Infiniband, PCI Express, SATA, USB, Firewire, etc.

Move from Bus to Crossbar On-Chip

§ Busses evolved in era where wires were expensive and
had to be shared

§ Bus tristate drivers problematic in standard cell flows, so
replace with combinational muxes

§ Crossbar exploits density of on-chip wiring, allows multiple
simultaneous transactions

10

A B C

Tristated Bus AA

BB

CC

Crossbar

I/O and Memory Mapping

§ I/O busses can be coherent or not
– Non-coherent simpler, but might require flushing caches or only

non-cacheable accesses (much slower on modern processors)
– Some I/O systems can cache coherently also (SGI Origin, TileLink)

§ I/O can use virtual addresses and an IOMMU
– Simplifies DMA into user address space, otherwise contiguous

user segment needs scatter/gather by DMA engine
– Provides protection from bad device drivers
– Adds complexity to I/O device

11

Interrupts versus Polling

Two ways to detect I/O device status:
§ Interrupts

+No CPU overhead until event
−Large context-switch overhead on each event (trap flushes

pipeline, disturbs current working set in cache/TLB)
−Can happen at awkward time

§ Polling
– CPU overhead on every poll
– Difficult to insert in all code
+Can control when handler occurs, reduce working set hit

§ Hybrid approach:
– Interrupt on first event, keep polling in kernel until sure no more

events, then back to interrupts

12

Example ARM SoC Structure

13
[©ARM]

ARM Sample Smartphone Diagram

14

[©ARM]

Intel Ivy Bridge Server Chip I/O

15

[©Intel]

Intel Romley Server Platform

16

[©Intel]

CS152 Administrivia

§ PS 5 due on Wednesday
§ Lab 5 due on Friday
§ Friday is exam review in Section
§ Final exam, Tuesday May 14, 8am-11am, 306 Soda

17

CS252

CS252 Administrivia

§ Final Project Presentations May 8th, 2:30-5pm, 511 Soda
§ 20-minute presentation, plus Q&A time

18

19Copyright © 2019, Elsevier Inc. All rights Reserved

Warehouse-scale computers (WSCs)
n Provides Internet services

n Search, social networking, online maps, video sharing, online
shopping, email, cloud computing, etc.

n Differences with high-performance computing (HPC)
“clusters”:
n Clusters have higher performance processors and network
n Clusters emphasize thread-level parallelism, WSCs emphasize

request-level parallelism
n Differences with datacenters:

n Datacenters consolidate different machines and software into
one location

n Datacenters emphasize virtual machines and hardware
heterogeneity in order to serve varied customers

Introduction

20Copyright © 2019, Elsevier Inc. All rights Reserved

WSC Characteristics
n Ample computational parallelism is not important

n Most jobs are totally independent
n “Request-level parallelism”

n Operational costs count
n Power consumption is a primary, not secondary, constraint when

designing system
n Scale and its opportunities and problems

n Can afford to build customized systems since WSC require volume
purchase

n Location counts
n Real estate, power cost; Internet, end-user, and workforce availability

n Computing efficiently at low utilization
n Scale and the opportunities/problems associated with scale

n Unique challenges: custom hardware, failures
n Unique opportunities: bulk discounts

Introduction

21Copyright © 2019, Elsevier Inc. All rights Reserved

Efficiency and Cost of WSC
n Location of WSC

n Proximity to Internet backbones, electricity cost,
property tax rates, low risk from earthquakes,
floods, and hurricanes

Efficiency and C
ost of W

SC

© 2019 Elsevier Inc. All rights reserved.

Figure 6.18 In 2017 AWS had 16 sites (“regions”), with two more opening soon. Most sites have two to three
availability zones, which are located nearby but are unlikely to be affected by the same natural disaster or power
outage, if one were to occur. (The number of availability zones are listed inside each circle on the map.) These 16 sites
or regions collectively have 42 availability zones. Each availability zone has one or more WSCs.
https://aws.amazon.com/about-aws/global-infrastructure/.

Amazon Sites

© 2019 Elsevier Inc. All rights reserved.

Figure 6.19 In 2017 Google had 15 sites. In the Americas: Berkeley County, South Carolina; Council Bluffs, Iowa;
Douglas County, Georgia; Jackson County, Alabama; Lenoir, North Carolina; Mayes County, Oklahoma; Montgomery
County, Tennessee; Quilicura, Chile; and The Dalles, Oregon. In Asia: Changhua County, Taiwan; Singapore. In
Europe: Dublin, Ireland; Eemshaven, Netherlands; Hamina, Finland; St. Ghislain, Belgium.
https://www.google.com/about/datacenters/inside/locations/.

Google Sites

© 2019 Elsevier Inc. All rights reserved.

Figure 6.20 In 2017 Microsoft had 34 sites, with four more opening soon. https://azure.microsoft.com/en-
us/regions/.

Microsoft Sites

25

Power Distribution

Copyright © 2019, Elsevier Inc. All rights Reserved

Efficiency and C
ost of W

SC

© 2019 Elsevier Inc. All rights reserved.

Figure 6.9 Mechanical design for cooling systems. CWS stands for circulating water system. From
Hamilton, J., 2010. Cloud computing economies of scale. In: Paper Presented at the AWS Workshop on Genomics
and Cloud Computing, June 8, 2010, Seattle, WA.
http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_GenomicsCloud20100608.pdf.

Cooling

27Copyright © 2019, Elsevier Inc. All rights Reserved

Infrastructure and Costs of WSC
n Cooling system also uses water (evaporation and

spills)
n E.g. 70,000 to 200,000 gallons per day for an 8 MW facility

n Power cost breakdown:
n Chillers: 30-50% of the power used by the IT equipment
n Air conditioning: 10-20% of the IT power, mostly due to fans

n How many servers can a WSC support?
n Each server:

n “Nameplate power rating” gives maximum power consumption
n To get actual, measure power under actual workloads

n Oversubscribe cumulative server power by 40%, but
monitor power closely

PhyscicalInfrastrcuture
and C

osts of W
SC

28Copyright © 2019, Elsevier Inc. All rights Reserved

Infrastructure and Costs of WSC
n Determining the maximum server capacity

n Nameplate power rating: maximum power that a server
can draw

n Better approach: measure under various workloads
n Oversubscribe by 40%

n Typical power usage by component:
n Processors: 42%
n DRAM: 12%
n Disks: 14%
n Networking: 5%
n Cooling: 15%
n Power overhead: 8%
n Miscellaneous: 4%

PhyscicalInfrastrcuture
and C

osts of W
SC

29Copyright © 2019, Elsevier Inc. All rights Reserved

Power Utilization Effectiveness (PEU)
n = Total facility power / IT equipment power

PhyscicalInfrastrcuture
and C

osts of W
SC

Figure 6.11 Average power utilization efficiency (PUE) of the 15 Google WSCs between 2008 and 2017. The
spiking line is the quarterly average PUE, and the straighter line is the trailing 12-month average PUE. For Q4 2016,
the averages were 1.11 and 1.12, respectively.

30Copyright © 2019, Elsevier Inc. All rights Reserved

Performance, Latency
n Latency is important metric because it is seen by

users
n Bing study: users will use search less as response

time increases
n Service Level Objectives (SLOs)/Service Level

Agreements (SLAs)
n E.g. 99% of requests be below 100 ms

PhyscicalInfrastrcuture
and C

osts of W
SC

© 2019 Elsevier Inc. All rights reserved.

Figure 6.1 List of outages and anomalies with the approximate frequencies of occurrences in the first year of
a new cluster of 2400 servers. We label what Google calls a cluster an array; see Figure 6.5. Based on Barroso,
L.A., 2010. Warehouse Scale Computing [keynote address]. In: Proceedings of ACM SIGMOD, June 8–10, 2010,
Indianapolis, IN.

Outages and Anomalies

© 2019 Elsevier Inc. All rights reserved.

Figure 6.3 Average CPU utilization of more than 5000 servers during a 6-month period at Google. Servers are
rarely completely idle or fully utilized, instead operating most of the time at between 10% and 50% of their
maximum utilization. The third column from the right in Figure 6.4 calculates percentages plus or minus 5% to come
up with the weightings; thus 1.2% for the 90% row means that 1.2% of servers were between 85% and 95% utilized.
From Figure 1 in Barroso, L.A., Hölzle, U., 2007. The case for energy-proportional computing. IEEE Comput. 40 (12),
33–37.

CPU Utilization is Usually Low

© 2019 Elsevier Inc. All rights reserved.

Figure 6.30 A Google rack for its WSC. Its dimensions are about 7 ft high, 4 ft wide, and 2 ft deep (2 m × 1.2 m
× 0.5 m). The Top of Rack switches are indeed at the top of this rack. Next comes the power converter that converts
from 240 V AC to 48 V DC for the servers in the rack using a bus bar at the back of the rack. Next is the 20 slots
(depending on the height of the server) that can be configured for the various types of servers that can be placed in the
rack. Up to four servers can be placed per tray. At the bottom of the rack are high-efficiency distributed modular DC
uninterruptible power supply (UPS) batteries.

Google WSC Rack

© 2019 Elsevier Inc. All rights reserved.

Figure 6.5 Hierarchy of switches in a WSC. Based on Figure 1.1 in Barroso, L.A., Clidaras, J., Hölzle, U., 2013. The
datacenter as a computer: an introduction to the design of warehouse-scale machines. Synth. Lect. Comput. Architect.
8 (3), 1–154.

Array of Racks

© 2019 Elsevier Inc. All rights reserved.

Figure 6.8 A Layer 3 network used to link arrays together and to the Internet (Greenberg et al., 2009). A load
balancer monitors how busy a set of servers is and directs traffic to the less loaded ones to try to keep the servers
approximately equally utilized. Another option is to use a separate border router to connect the Internet to the data
center Layer 3 switches. As we will see in Section 6.6, many modern WSCs have abandoned the conventional layered
networking stack of traditional switches.

Older WCS Network Structure

36Copyright © 2019, Elsevier Inc. All rights Reserved

Array Switch
n Switch that connects an array of racks

n Array switch should have 10 X the bisection
bandwidth of rack switch

n Cost of n-port switch grows as n2

n Often utilize content addressible memory chips
and FPGAs

C
om

puter Ar4chitecture of W
SC

© 2019 Elsevier Inc. All rights reserved.

Figure 6.31 A Clos network has three logical stages containing crossbar switches: ingress, middle, and
egress. Each input to the ingress stage can go through any of the middle stages to be routed to any output of the
egress stage. In this figure, the middle stages are the M Spine Blocks, and the ingress and egress stages are in the N
Edge Activation Blocks. Figure 6.22 shows the changes in the Spine Blocks and the Edge Aggregation Blocks over
many generations of Clos networks in Google WSCs.

Newer Clos Network Structure

© 2019 Elsevier Inc. All rights reserved.
Figure 6.32 Building blocks of the Jupiter Clos network.

Google Jupiter Clos Network

39Copyright © 2019, Elsevier Inc. All rights Reserved

WSC Memory Hierarchy
n Servers can access DRAM and disks on other

servers using a NUMA-style interface

C
om

puter Ar4chitecture of W
SC

40Copyright © 2019, Elsevier Inc. All rights Reserved

Storage options
n Use disks inside the servers, or
n Network attached storage through Infiniband

n WSCs generally rely on local disks
n Google File System (GFS) uses local disks and

maintains at least three replicas

C
om

puter Ar4chitecture of W
SC

41Copyright © 2019, Elsevier Inc. All rights Reserved

Cost of a WSC
n Capital expenditures (CAPEX)

n Cost to build a WSC
n $9 to 13/watt

n Operational expenditures (OPEX)
n Cost to operate a WSC

PhyscicalInfrastrcuture
and C

osts of W
SC

42Copyright © 2019, Elsevier Inc. All rights Reserved

Prgrm’g Models and Workloads
n Batch processing framework: MapReduce

n Map: applies a programmer-supplied function to each
logical input record

n Runs on thousands of computers
n Provides new set of key-value pairs as intermediate values

n Reduce: collapses values using another
programmer-supplied function

Program
m

ing M
odels and W

orkloads for W
SC

s

43Copyright © 2019, Elsevier Inc. All rights Reserved

Prgrm’g Models and Workloads
n Example:

n map (String key, String value):
n // key: document name
n // value: document contents
n for each word w in value

n EmitIntermediate(w,”1”); // Produce list of all words

n reduce (String key, Iterator values):
n // key: a word
n // value: a list of counts
n int result = 0;
n for each v in values:

n result += ParseInt(v); // get integer from key-value pair
n Emit(AsString(result));

Program
m

ing M
odels and W

orkloads for W
SC

s

44Copyright © 2019, Elsevier Inc. All rights Reserved

Prgrm’g Models and Workloads
n Availability:

n Use replicas of data across different servers
n Use relaxed consistency:

n No need for all replicas to always agree

n File systems: GFS and Colossus
n Databases: Dynamo and BigTable

Program
m

ing M
odels and W

orkloads for W
SC

s

45Copyright © 2019, Elsevier Inc. All rights Reserved

Prgrm’g Models and Workloads
n MapReduce runtime environment

schedules map and reduce task to WSC
nodes
n Workload demands often vary considerably
n Scheduler assigns tasks based on completion of

prior tasks
n Tail latency/execution time variability: single

slow task can hold up large MapReduce job
n Runtime libraries replicate tasks near end of job

n Don’t wait for stragglers, repeat task somewhere else

Program
m

ing M
odels and W

orkloads for W
SC

s

Computer Architecture in 2019

§ Explosion of interest in custom architectures due to end of
transistor scaling

– Apple, Google, Tesla, design and build their own processors!
– Full employment for computer architects.

§ But need to learn about application domains
– Cannot just work with precompiled binaries anymore!

§ Get involved in research projects,
– ADEPT – microprocessor architecture and chip design
– RISE – machine learning, datacenter software, and security

§ Undergrad research experience is the most important part
of application to top grad schools!

46

End of CS152/CS252!

§ Welcome feedback on course eval, or via email

47

