CS152 Discussion Section

3/8/19

Administrivia

e Midterm grading moving along on schedule

e Today’s discussion will introduce Lab 3
o Won't officially be assigned until after Lab 2!
o Due April 8th (one month from today)
o Relies on local simulation like Lab 1

o Instead of talking about the actual lab procedure, we’ll take a
higher-level look at what is actually being simulated

Lab 3 Goals

e Take an out-of-order core microarchitecture that has many parameters
e Vary those parameters and see how the performance is affected

o Branch predictor

o ROB size

o Number of physical registers

o Et cetera

The Berkeley Out-of-Order Machine
(BOOM)

BOOM Pipeline Overview

Fetch
(4 cycles)

1$

Backing
Predictor

:
B

BTB
Backing

\ Predictor

Fetch
Buffer

DefaultBoomConfig

Decode Rename Issue Register Read Execute Memory Writeback
and and D$ Shim
Rename Dispatch =
—LLLLISAQ To IntFP
| ZTTTT1SDQ | — D$ — RF
TTITTILAQ
Mem. Issue Queue
g_, —
o < || L x0—p| B MemCalc
gl Al
= Physical INT 2
c 0 Q - ALU Issue Queue RF (6R3W) [To Int
e —
S B S 2 - = AW RF
c - = a gl
2 2 p o > = -
@ [a]
8 g go § Al x2 | B=—=3BRIALU
8 (5} (3} % I
g o FP Issue Queue ; iMul o IntEP
» _— olIn
g e P/ RF
- - — [Physical FP —
] A RF (3R2W) | 9
Int2FP
— Commit X3
+ | = FPaint
=——rPDiv o ::::/FP
Writebacks, Wakeups, a EMA
and more

Type of Machine

BOOM

ROB
inst
< Issue ISA
Window s w - Register
w uop : tags A »| File
> |\ Commit ARF)
Commit M F\Jw
4 vy
I~
wakeup V’ I_ssue uop | tags | _data -
Physical Window
Register -
File < #'
(PRF)
v u
i+l
i+1
LY
data bus A

Unified Physical Register File Data in ROB

Out-of-Order Design Space

Unified Physical Register File

(MIPS R10K, Alpha 21264, Intel Pentium 4 & Sandy/Ivy Bridge)

= Rename all architectural registers into a single physical register file
during decode, no register values read

= Functional units read and write from single unified register file holding
committed and temporary registers in execute

= Commit only updates mapping of architectural register to physical
register, no data movement

Decode Stage

. . Committed Register
Register Mapping [| Unified Physical Register File Mapping

Read operands at issuel l TWrite results at completion

Functional Units

Lifetime of Physical Registers

® Physical regfile holds committed and speculative values

®Physical registers decoupled from ROB entries (no data in ROB)

1d x1, (x3) 1d P1, (Px)
addi x3, x1, #4 addi P2, P1l, #4
sub x6, x7, x9 sub P3, Py, Pz
add x3, x3, x6 add P4, P2, P3
1d x6, (x1) Rename 1d pP5, (P1l)
add x6, x6, x3 add P6, P5, P4
sd x6, (x1) sd P6, (P1l)
1d x6, (x11) 1d P7, (Pw)

When can we reuse a physical register?
When next writer of same architectural register commits

Physical Register Management

Rename Physical Regs F st

able PO
gg B% =¥ x1, 0(x3)
TP~ PRl 1 addi x3, x1, #4
)g . \gé EX%i E sub x6, x7, x6
x/ L6 P8 FQ = add x3, x3, x6

| ~ 1 1

- Pr 0 =\ ldx6, 0(x1)
use | — oD pl | PR1 p2 | PR2 Rd \\EPDRd PRAY
X d p| P7 X1 1Pg =d0)

10

Separate Issue Window from ROB

The issue window holds only

; H D D ROR
instructions that have been decoded Hste——- PT5RT TP TPRT TPRAT ="
and renamed but not issued into
execution. Has register tags and
presence bits, and pointer to ROB
entry.

Oldest [Rd LPRd PC i

Reorder buffer used to hold
exception information for commit.
Free

-’-’

ROB is usually several times larger than issue window — why?
11

Control Flow Penalty

Modern processors may have > 10
pipeline stages between next PC
calculation and branch resolution !

How much work is lost if pipeline
doesn’t follow correct instruction
flow?
~ Loop length x pipeline
width + buffers

Next fetch
started

Branch

executed

12

Reducing Control Flow Penalty

= Software solutions
— Eliminate branches - loop unrolling
* Increases the run length
— Reduce resolution time - instruction scheduling

* Compute the branch condition as early as possible (of limited value because
branches often in critical path through code)

» Hardware solutions

— Find something else to do (delay slots)

* Replaces pipeline bubbles with useful work (requires software cooperation)
— quickly see diminishing returns

— Speculate - branch prediction
* Speculative execution of instructions beyond the branch
* Many advances in accuracy, widely used

13

Branch Prediction

Motivation:
Branch penalties limit performance of deeply pipelined processors
Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:
Prediction structures:
e Branch history tables, branch target buffers, etc.

Mispredict recovery mechanisms:
e Keep result computation separate from commit
e Kill instructions following branch in pipeline
e Restore state to that following branch

14

Static Branch Prediction
Overall probability a branch is taken is ~60-70% but:

backward forward
90% %'> 50%

A basic “null predictor” can always pick PC+4!

Dynamic Branch Prediction:
learning based on past behavior

=Temporal correlation

— The way a branch resolves may be a good predictor of
the way it will resolve at the next execution

=Spatial correlation

— Several branches may resolve in a highly correlated
manner (a preferred path of execution)

16

One-Bit Branch History Predictor

= For each branch, remember last way branch went

= Has problem with loop-closing backward

branches, as two mispredicts occur on every loop
execution

1. first iteration predicts loop backwards branch not-taken (loop
was exited last time)

2. lastiteration predicts loop backwards branch taken (loop
continued last time)

17

Branch Prediction Bits

e Assume 2 BP bits per instruction for Finite State Machine
e Change the prediction after two consecutive mistakes!

-take
wrong

BP state:
(predict take/-take) x (last prediction right/wrong)

18

Branch Prediction Bits

e Why not store a copy of this FSM for every instruction?

Must keep a table that is direct-mapped by some of the PC
bits, with each row holding a copy of FSM state.

19

Branch History Table (BHT)

Fetch PC o0
\ ~ _‘_’J |
- 1T k '— 2%_entry
I-Cache BHT Index ' BHT,
Instruction y 2 bits/entry
Opcode offset :
l \ v v v/
|
\ !
Branch? Target PC Taken/-Taken?

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions
20

Branch Prediction Penalties

eEven if you have perfect prediction, when does it
happen?

e\What happens if you mispredict?

21

Branch Misprediction in Pipeline

Fetch

O O

nject corregt PC

—®| Decode

= Can have multiple unresolved branches in ROB

—

Commit

* %omplete

Execute

= Can resolve branches out-of-order by killing all the instructions in ROB that follow a mispredicted branch

= MIPS R10K uses 4 mask bits to tag instructions that are dependent on up to 4 speculative branches

= Mask bits cleared as branch resolves, and reused for next branch

22

Rename Table Recovery

» Have to quickly recover rename table on branch
mispredicts

= BOOM has a parameterizable number of snapshots for
each of four outstanding speculative branches

23

More BOOM Detail

Frontend Overview

PC

RVC Memory
Interpretation Here

FO F1 F2 F4
IMem
Response .
s Sueie Fetch Buffer RVC Expansion
—>
Back-end Redirect Target—p»| RES \ J Fetch Packet —> H e re
PC—o— p i /
TLB | Resp |
fNPC Logic% BR Decode ———| Other PCs
P > ;
| BTB Updatt BR Checker
[
BTB
RAS BTB Response Fetch Target
Tags/Target/etc. BIM Queue Queue
) I - ‘ V
F——>
Resp
I |
BHR Hashing L-New History—p| Backing Predictor (TAGE, GShare, etc.) —‘
-Old History

Frontend Description

e CycleO e Fetch Buffer
o Getthe PC to pass into the BTB/BPD and 1$ o Connects Front-end to Back-end
o Hash the GHR outside the “backing predictor” o Passes Fetch Packet of instructions to the
e Cycle1 Decode stage
o 1% is getting a line e Fetch Target Queue
o BTB makes a prediction on the PC O Previously called the Branch Reorder Buffer
o lIststage of "backing predictor” O Holds branch prediction information used to
m Ex. GShare accesses counter tables update the BPD on commit, mispredictions,
e Cycle2 speculation
o 2nd stage of "backing predictor” O Dequeued on commit once all instructions in an
m Ex. GShare puts counter output into entry are committed
quete e RVCinCycle3
e Cycle3

o Puts a full Fetch Packet into the Fetch Buffer
depending on where instruction is aligned
o Used in Decoder to “expand” instructions

o BR decode I$ result (not “true” decode)

o BR check to update BTB and redirect

o Enqueue the Fetch Buffer and Fetch Target
Queue with instructions and BR info

Branch Predictor Pipeline

e GHR management is kept outside the “abstract” predictor
o Keeps track of global branch state
o Keep “snapshot” or copy of GHR per “fetch packet”

e Abstract Predictor

o TAGE
o GShare
o BaseOnly

m Only use BIM from BTB to predict
o Random

m Using LSFR to create random predictions
o Null predictor

m Don’t predict anything

GShare Example

FO F1 F2 F3
Commit.ldx ~ Commit.Info

I TS -

: GShare Predictor!

1 1

1 1

1 1

1 1

1 1

1 e 1d Write Data 1

: Wwrite ldx Counter Table :

1 1

1 > 1

: — | —Counter Data :

1 Read ldx f

1 1

1 1

: | Debug ldx- :

1 1

1 1

1 1

r 1 1

1 1

— Req.PC. > T Resp.Takens |
IA 1 1

1 1
g g iR ——

Hash
| E—
»L History- History —History—‘i—bﬂ
Resp.History

FTQ Restore

Backend

Decode and Rename

e Simple Decode
O Thanks RISC-V!

O RVC instructions are expanded here to go through the normal decode

® Rename
o Splitinto FP and INT Rename
m Both are coupled by the Decode Width
o Map Table - maps logical registers (x0,...x31) to physical registers
m Otherwise known as the “rename table”
o Busy Table - marks physical registers as “busy” until operands are ready
o Free List - running list of physical registers that are free

e Complete Map table snapshots are kept for each BR instruction in the ROB
o Canrecover in a single cycle

Dispatch and Issue

e Multiple Issue Queues for each type of micro-operation (uop)
O Memory
O Integer (ALU)
O Floating Point
O Note: Now you can have a monolithic Memory + Integer issue queue
e Once operands are ready, then the uop is issued (this means reading the
necessary registers and moving to the execution stage)
e Wakeup (ready) ports coming from the Exe Units are automatically wired to the
issue queues

ROB

dis_mask dis_uops
1|1 addw bne w
PC Instruction Bank(0) Instruction Bank(1) 110]|1 div . bne
val bsy exc uopc brmask| | val bsy exc uopc brmask
rob_head <
i g\B 8888 DI 8%0 wb_valids
. ng LI 0000 Rg <
rDOb—ta"I : 255 SW [0007 5] [0 wb_uops
(clears busy bit)
11 add mul

com_mask com_uops (updates rename state)

Execution Units

e Execution Unit
o Top level execution unit that shares read port
and write ports
o Can be composed of multiple “smaller” functional
units
o May reserve a dedicated RF write port, or share
the long-latency writeback with memory
e Functional Unit
o Wraps external units into pipelined functional
units
o Auto-generates pipeline regs for uop metadata
o Auto-generates misspeculation Kill logic

Functional Unit |

Y
Pipelined
Functional Unit

\ 4

BOOM

FPU Unit

hardfloa mulAddSubRecodedFloatN

Functional Unit Hierarchy

Unified

2R2W IRF
3R2W FRF

9 MEM
; Int2FP

b ALU + BR Unit

b iMul
=—— v

— LL to IRF

—» | L to FRF

—p Fast to IRF

9 FP2Int
S FPDiv
— V]

—» LLtoIRF
L—» Fastto FRF

—» LLto FRF

4R2W IRF
3R2W FRF

b MEM

—» LLto IRF
—» LLto FRF

l:_'»____J Int2FP

S ALU + BR Unit

= imu
= iDiv

—» L to FRF

—p Fast to IRF

9 FP2Int
9 FPDiv
— V)

—» LLtoIRF
—p» Fastto FRF

— LLtoFRF

8R4W IRF
6R3W FRF

B MEM

[—> LLto IRF
— LL to FRF

=3 ALU + BR Unit

a iMul
=—— v

— Fast to IRF

=—aw

—> [Fastto IRF

B Int2FP
= Av

+—> LLto FRF

— Fastto IRF

9 FP2Int
9 FPDiv
— V)

—» LLtoIRF
L—» Fastto FRF

—» LLto FRF

e— V)

—» Fastto FRF

Execution Units

BYPASSES
A (val, pdst, data)
i
|
reg.valid |
|
req.uop > resp.valid
—> —>
Op1 Dat: Q 9
S : >2
o ol
WB Data
Op2 Data > }
fu_types Q‘J Parameters
<< < busy =Sy 9
num_read_ports = 2
T num_write_ports =1

kill Br num_bypass_ports = 1
(flush_pipeline)

is_branch_unit = false
is_mem_unit = false

Pipelined Functional Unit is_bypassable = true

\ 4

ROB

A\ Store Address \/ Load Address
= — [P] — ——a S 7. T ——
> SAQ assoc > LAQ
y. A val addr \/ | searcn ssoc] A val addr V E R F st_mask forwgrd7
Kill search E a std_idx
addrmatches
exceptions* woken-up load address
ordering failures
from store search
youngest store idx Age
load depends on Logic
br o
kill

SDQ

val data

Data

Data
Array

cache

st->Id addr match .
oot '__ED_|>‘ kill request

TLB miss

L

AA

[—

- —~ D Data I—-ﬁ]—-—-— ———— e —— -

Mem Stage

A4 Y
______ P Data | — — D nack }=i = — -

@

wB Stage

LSU Behavior

I'1 Thnramina lnade ara immadiatalivicciiad ta Aatararha 1

Memory System

e SAQ

o Holds store addresses
o Content Addressable Memory (CAM) to associatively search for conflicts
o Incoming loads must search for dependent stores

e SDQ
o Hold store data
e LAQ

o Holds load addresses
o CAM for conflict detection
o Incoming loads must search for earlier loads

e D$ Shim
o Wraps the underlying rocketchip L1 cache
e Rocket non-blocking L1 cache

