
CS152 Discussion Section

3/8/19

Administrivia

● Midterm grading moving along on schedule

● Today’s discussion will introduce Lab 3

○ Won’t officially be assigned until after Lab 2!

○ Due April 8th (one month from today)

○ Relies on local simulation like Lab 1

○ Instead of talking about the actual lab procedure, we’ll take a
higher-level look at what is actually being simulated

Lab 3 Goals

● Take an out-of-order core microarchitecture that has many parameters

● Vary those parameters and see how the performance is affected

○ Branch predictor

○ ROB size

○ Number of physical registers

○ Et cetera

The Berkeley Out-of-Order Machine
(BOOM)

BOOM Pipeline Overview
DefaultBoomConfig

Type of Machine

Data in ROBUnified Physical Register File

BOOM

Out-of-Order Design Space

▪

▪

▪

ld x1, (x3)
addi x3, x1, #4
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x11)

ld P1, (Px)
addi P2, P1, #4
sub P3, Py, Pz
add P4, P2, P3
ld P5, (P1)
add P6, P5, P4
sd P6, (P1)
ld P7, (Pw)

op p1 PR1 p2 PR2
e
x

use Rd PRdLPRd
ROB

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6>P5 <x7>P6 <x3>P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<x1>P8 p

x ld p P7 x1 P0

x5 P5x6 P6x7

x0 P8x1
x2 P7x3
x4

Rename
Table

P0

P8

I-cach
e
Fetch
Buffer
Issue
Buffer
Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC
Fetch

Branch
executed

Next fetch
started

▪

•

•

▪

•

•
•

▪

▪

▪
▪

1.

2.

▪
▪
▪
▪

Fetch Decode

Execute

CommitReorder Buffer

Kill

Kill Kill
P
C

Inject correct PC
Branch
Prediction

Branch
Resolution

Complete

▪

▪

More BOOM Detail

Frontend Overview
RVC Memory

Interpretation Here

RVC Expansion
Here

Frontend Description

● Cycle 0
○ Get the PC to pass into the BTB/BPD and I$
○ Hash the GHR outside the “backing predictor”

● Cycle 1
○ I$ is getting a line
○ BTB makes a prediction on the PC
○ 1st stage of “backing predictor”

■ Ex. GShare accesses counter tables

● Cycle 2
○ 2nd stage of “backing predictor”

■ Ex. GShare puts counter output into
queue

● Cycle 3
○ BR decode I$ result (not “true” decode)
○ BR check to update BTB and redirect
○ Enqueue the Fetch Buffer and Fetch Target

Queue with instructions and BR info

● Fetch Buffer
○ Connects Front-end to Back-end
○ Passes Fetch Packet of instructions to the

Decode stage

● Fetch Target Queue
○ Previously called the Branch Reorder Buffer

○ Holds branch prediction information used to
update the BPD on commit, mispredictions,
speculation

○ Dequeued on commit once all instructions in an
entry are committed

● RVC in Cycle 3
○ Puts a full Fetch Packet into the Fetch Buffer

depending on where instruction is aligned
○ Used in Decoder to “expand” instructions

Branch Predictor Pipeline

● GHR management is kept outside the “abstract” predictor
○ Keeps track of global branch state
○ Keep “snapshot” or copy of GHR per “fetch packet”

● Abstract Predictor
○ TAGE
○ GShare
○ BaseOnly

■ Only use BIM from BTB to predict
○ Random

■ Using LSFR to create random predictions
○ Null predictor

■ Don’t predict anything

GShare Example

Backend

Decode and Rename

● Simple Decode
○ Thanks RISC-V!

○ RVC instructions are expanded here to go through the normal decode

● Rename
○ Split into FP and INT Rename

■ Both are coupled by the Decode Width
○ Map Table - maps logical registers (x0,...x31) to physical registers

■ Otherwise known as the “rename table”
○ Busy Table - marks physical registers as “busy” until operands are ready
○ Free List - running list of physical registers that are free

● Complete Map table snapshots are kept for each BR instruction in the ROB
○ Can recover in a single cycle

Dispatch and Issue

● Multiple Issue Queues for each type of micro-operation (uop)
○ Memory

○ Integer (ALU)

○ Floating Point

○ Note: Now you can have a monolithic Memory + Integer issue queue

● Once operands are ready, then the uop is issued (this means reading the
necessary registers and moving to the execution stage)

● Wakeup (ready) ports coming from the Exe Units are automatically wired to the
issue queues

ROB

● [What to add about the ROB

here?] Fairly basic...

Execution Units
● Execution Unit

○ Top level execution unit that shares read port
and write ports

○ Can be composed of multiple “smaller” functional
units

○ May reserve a dedicated RF write port, or share
the long-latency writeback with memory

● Functional Unit
○ Wraps external units into pipelined functional

units
○ Auto-generates pipeline regs for uop metadata
○ Auto-generates misspeculation kill logic Functional Unit Hierarchy

2R2W IRF
3R2W FRF

4R2W IRF
3R2W FRF

8R4W IRF
6R3W FRF

Execution Units

Pipelined Functional Unit

Memory
System

Memory System

● SAQ
○ Holds store addresses
○ Content Addressable Memory (CAM) to associatively search for conflicts
○ Incoming loads must search for dependent stores

● SDQ
○ Hold store data

● LAQ
○ Holds load addresses
○ CAM for conflict detection
○ Incoming loads must search for earlier loads

● D$ Shim
○ Wraps the underlying rocketchip L1 cache

● Rocket non-blocking L1 cache

