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For your solutions you should submit a hard copy; either hand written pages stapled together or a print out of a
typeset document1.

1. Attestation using Trusted Computing Hardware [2 points]
Recall that the trusted computing architecture includes a hardware TPM in every machine. The TPM contains
a secret signing key and the resulting signatures are used for attestation. Do all computer hardware TPM chips
require to have a distinct signing key? Explain why.

Solution. Yes, all TPM chips should have distinct signing keys. Suppose two computers, say A and B, have
the same keys and A is a compromised machine running a malicious software stack under attacker’s control.
Whenever A recieves a remote attestation request, it could forward the attestation request to B (which runs
a valid software stack) and forward B’s response as the attestation for A. This gives a false assurance of A’s
software stack integrity to a remote party, while A is running a compromised stack.

2. Trusted Boot using Trusted Computing Hardware [3 points]
Recall that the trusted computing architecture includes a hardware TPM in every machine. Suppose the TPM
does not have any persistent protected storage other than those needed for storing the cryptographic keys. This
would still permit remote attestation applications, as the attesting process requires no protected persistent stor-
age. Would it also permit secure boot? If yes, how would you design a secure system. If no, explain why.

Solution. No, it does not permit secure boot. For secure boot the TPM computes the integrity hash of the nth

layer while booting, and compares it to the integrity hash of the valid software that it expects to be running at
that layer. This requires it to store the valid hashes on persistent storage, and further, ensure that the integrity
checking hashes are never tampered with by the software layers. Hence, without protected storage in the TPM,
this is not possible.

3. Inline Reference Monitors [10 points]
Recall that address sandboxing is the policy of confining all memory reads and writes made by an untrusted
module to a pre-determined segment in memory. It is possible to enforce address sandboxing using software
fault isolation (SFI) – SFI embeds an inline reference monitor to confine all memory accesses to within one
segment in the process address space.

Consider a target architecture has only two memory access instructions, load and store. load [r1],r2
reads the value from memory pointed to by register r1 into register r2, and, store [r1],r2 writes the
value of register r2 to memory pointed to by register r1. The target architecture has only one unconditional
control transfer instruction, jmp [r1], that transfers control to the address stored in r1. All instruction on
the architecture are 8 bytes in length. You may assume other instructions exist if you need them to solve this
question, but be sure to define them before using them in your answers.

(a) [3 points] The following checks for the enforcing address sandboxing policy are inserted before each load
[r1],r2 and store [r1],r2 instruction.

r1 = r1 & 0x00000fff

r1 = r1 | 0xccccc000
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The following checks are inserted before jmp [r1] instructions :

r1 = r1 & 0x00000fff

r1 = r1 | 0xbbbbb000

This implementation of the address sandboxing scheme aims to confine memory reads and writes to the memory
range 0xccccc000 - 0xcccccfff, and the untrusted code with inline checks is placed in the memory
segment 0xbbbbb000 - 0xbbbbbfff. Explain why this implementation still allows a malicious code to
write memory outside the intended range. Outline an alternate implementation that is secure, and explain why
your proposed implementation is safe.

Solution. . The checks permit an attacker to jump in the middle of inline monitor checks for load/store opera-
tions. Thus, and attacker can set r1 to a value of its choice, and jump right past the instrumented checks straight
to the access instruction.

An alternate implementation should use dedicated registers instead of r1, which are only used by the inline
reference monitor checks, as outlined in the lecture slides, and reproduced below :

dr1 = r1 & 0x00000fff ; mask r1
dr1 = dr1 | 0xccccc000
load [dr1], r2

The “dr1” register is used only by IRM checks, and is initialized approporately by the IRM. You can verify that
no matter where the control jumps, at the execution of load instruction, “dr1” will always have an address in the
sandboxed range.

(b) In parts (b.1) and (b.2) you are asked to design an inline reference monitor scheme, similar to SFI, with a
different policy than address sandboxing. The new policy is to prevent an untrusted module from reading/writing
data within one segment, starting at address 0xabcde000 and ending at 0xabcdefff.

(b.1) [3 points] Show the inline reference monitor checks, if any, that may be needed before the load, store
and jmp instructions in the untrusted code. Clearly state use of any dedicated registers and/or memory in your
scheme.

Solution. Here we show the instrumentation for load [r1], r2; store is similar.

dr1 = r1 & 0xfffff000 ; mask r1
dr2 = r1 & 0x00000fff ; get offset in segment
cmp dr1 0xabcde000 ; check if segment is in prohibited range
jeq error_label ; if yes, exit.
dr2 = dr1 | dr2 ; construct original address
load [dr2], r2

error label is an exit point of the program, where execution halts. No checks are need for jump instructions.

(b.2) [4 points] How does your scheme prevent a malicious module from bypassing the inserted checks using
indirect control transfer instructions in its code? Briefly explain why are the checks sufficient to ensure the new
policy.

Solution. “dr1” and “dr2” are dedicated registers. “r1” is never used after the second IRM check. So, as long
the verifier ensures that dr1 and dr2 have correct values, the attacker can not violate the policy by setting “r1”
and jumping anywhere after the second check. If it jumps between the first and second check, dr2 will always
be correct – the reason is that “dr1” is ensured to never have a value 0xadcde000 if control reaches the load.

4. System Call Interposition [10 points]
Consider the following program running on a typical UNIX system.

For conciseness, the code only show the system calls made by the program as S1, S2 . . ., S7. S0 denotes a
network write system, S1 denotes a network read, S2 is a file read system call, S3 is a file write, S4 is
a file open system call, S5 is file close, S6 is a getruid and S7 is setuid.



1. S0;
2. while (..) {
3. S1;
4. if (...) S2;
5. else S3;
6. if (... S4 ...) ... ;
7. else S2;
8. S5;
9. }
10. S6;
11. S7;

(a) [2 points] How can system call interposition prevent an attacker from exploiting this program to execute a
shell (via the exec system call).

Solution. By analysing the body of the code, it is clear that the code makes no exec system calls during
legitimate program execution. System call interposition can flag an exploit as soon as exec is invoked.

(b) [6 points] Based on the program code, you notice that the program can only execute a certain sequence of
system calls under benign operation. For instance, the program never performs a network read or write after
the setuid system call. Write a regular expression that captures all legitimate sequences of system calls that
the program shown above can make. Express your answer using regular expression operators (concatenation,
alternation and Kleene’s star) over the set of symbols (S1, S2 . . ., S7 and ε).

Solution. S0. (S1. (S2 | S3). S4. (ε| S2). S5.)∗ S6. S7 .

(c) [2 points] How does your regular expression model in part (b) help enforce the following policy using system
call interposition : No network writes after file read. Outline one example of a threat that this policy defends
against.

Solution. The system call interposition based monitor ensures that all sequences of system calls invoked by
the program at runtime match the regular expression, i.e., the regular expression defines a policy for all valid
sequences of system calls that the monitor can observe. S0 (network write) can never follow S2 (file read) in
any sequence that matches the regular expression – thus, a system call monitor that allows system call sequences
that match the regular expression will automatically enforce this policy.

Consider an attack where the attacker compromises this application, then reads a confidential file and sends it
contents over the network. Syscall interposition with the above policy prevents this attack on this program.

5. Privilege Separation [10 points]
Foomail is a UNIX electronic mail transfer program – it manages sending and receiving mails on a multi-user
UNIX system. In this question, you are given a high-level design description of the functions that foomail
performs. Note that it requires superuser privileges, but many of its operations handle immense amount of
untrusted data. Your task is to redesign the foomail program with several trusted and untrusted components
using the principle of least privilege.

System Resources. The set of resources that are used by foomail along with a brief description is outlined
below.

• Mail Queue (Q) : An operating system resource that stores incoming and outgoing mails, waiting to be
processed, for all users on the system.

• Mail Spool Directory (SD) : A special directory containing a separate file for each user where the mail
transfer program stores the received mail for that user.

• SMTP Port on local machine (P) : Port 25 is the SMTP port on which the mail transfer program binds and
listens for incoming mail delivery connections.



• Other high-numbered ports on local ports (N) : foomail needs to bind and connect to high-numbered
ports on local machine to access the network for communication with SMTP mail servers on remote hosts.

• DNS (D) : Access to a DNS server on a remote host on the network, which resolves network host names
to IP addresses.

• /etc/hosts file : Privileged file (read/write access allowed only to superuser, read-only access to users
on the system), that is a local database to lookup IP addresses for network hostnames.

• /etc/passwd file : Privileged file (read/write access allowed only to superuser, read-only access to
users on the system), containing general user information (in addition to other sensitve information) about
each user on the system.

• .forward file : A user-specific file (owned by a user), that contains information about how to forward
email received at one email address to another.

Access to Q, SD, and binding to port P requires superuser permissions. Access permissions to files are as
outlined in the above description; other resources can be accessed by processes running as unprivileged (non-
superuser) users.

Operations performed by foomail. When the foomail process runs, it roughly needs to perform the fol-
lowing tasks, not necessarily in the order defined below:

• Bind and listen on local SMTP port P for receiving mail.

• Upon receiving mail from the network port P, it updates Q with the arrived mail.

• Read Q to fetch incoming mail that has not been processed.

• Access user information from /etc/passwd to determine the recipient’s information.

• Read .forward files of a user to check if mail is to be delivered.

• Consult SD to place received mail for a user in his/her mail file.

• Write outgoing mails from user’s mail file in SD to Q for further processing.

• Read Q to get outgoing mail.

• To send outgoing mail to another remote SMTP mail server, foomail first needs to get an IP for the
hostname of the remote SMTP mail server. It first reads /etc/hosts to resolve the network hostname
to an IP address.

• To send outgoing mail to another remote SMTP mail server, it first needs to get an IP for the hostname of
the remote SMTP mail server. If /etc/hosts can not resolve the hostname of target SMTP server, it
makes a network request to a DNS server to get the destination IP.

• Send outgoing mail to destination SMTP server by opening a network connection to the IP address on the
remote SMTP server.

(a) Split the monolithic design of foomail into 2 or more individual components, that minimize the privileges
required for each component. Label each of the components as A,B,C,D . . . and so on.

Solution. The goal is to give minimum priveleges to each component. Therefore, we should try to identify
individual functions and assign each function to a separate component.

(a.1) [4 points] Describe the functionality provided by each component in no more than 2 sentences per
component.

Solution.

• A - Queue Handler: Runs as superuser, only reads/writes files to queue.

• B - Directory Manager - Runs as superuser, creates and deletes files in the directory.

• C - Incoming mail daemon - Binds to port 25 and listens for new incoming mail connection. Drops
superuser privileges after bind.

• D - DNS proxy - Handles all network traffic to and from the DNS server. Needs superuser privleges.



• E - Network proxy - Manages accesses to the high numbered ports. Needs no superuser privileges.

• F - Local DNS resolver - Performs accesses to /etc/hosts/. Needs no superuser privileges.

• G - GECOS extractor - Accesses user information in /etc/passwd. Needs no superuser privileges.

• H - Forward file reader - Reads .forward files for a user. Needs no superuser privileges.

(a.2) [4 points] Write down for each component the kind of access (read, write, read-and-write, or none)
for each of the resources described above, as a matrix with rows as the component labels and columns as resource
names.

Q SD P N D etc hosts etc passwd .forward
A RW
B RW
C R
D RW
E RW
F R
G R
H R

(a.3) [2 points] In at most 3 sentences, precisely state what security mechanisms would you use to enforce
restrictions you have outlined in part (a.2) on components.

Solution. Place each component as a separate process, each running with indicated user privileges. Inter-
component communication would be through IPC mechanisms. System call interposition should be used to
restrict access privileges to file and network resources, as indicated by the above matrix.

(b) [5 points] Consider the component, say X, that reads /etc/passwd which runs at normal user privileges.
X is passed the name of the recipient by the component that receives the email from the network, and X then
retrieves the user’s account information from /etc/passwd. Suppose a remote attacker discovers a buffer
overflow in X, which it can exploit remotely by providing a very long recipient user name. Based on the
permission restrictions imposed by your solution in part (a.2), can the attacker exploit this bug to leak sensitive
information in /etc/passwd about all users to the remote attacker directly via the network?

Solution. No. X does not have network access as per the imposed policy.

If not, then consider a slightly different setting. Suppose the user has installed a malicious network game
application on the same computer as the one running foomail. It turns out that the remote attacker who knows
about the buffer overflow in X, is also the author of the malicious game. The malicious game has been restricted
access only to the network, and has no access to files in /etc. Can the remote attacker manage to learn the
sensitive information in /etc/passwd in this setting?

Solution. Yes, the remote attacker can use covert channels to communicate the information between the com-
promised component and the network game. Recall from class that it is possible for the attacker to communicate
a “1” by doing a CPU intensive operation at a pre-decided time – the listner can simply monitor the CPU load
to determine at the same time to check if module X wishes to communicate “1” or “0”.


