
Bypassing Browser Memory
Protections in Windows Vista

Alexander Sotirov
alex@sotirov.net

Berkeley CS161

Introduction
Part I:

© Copyright IBM Corporation 2007

Introduction

Thesis
– Vista protections are largely ineffective at preventing

browser exploitation
Overview

– Whirlwind tour of Vista protection mechanisms
GS, SafeSEH, DEP, ASLR

– Techniques for exploiting protection limitations
All protections broken

– Conclusion
Full paper available at
http://www.phreedom.org/research/

© Copyright IBM Corporation 2007

Demo

Exploiting IE despite all protections on Vista
– ASLR and DEP turned on
– Third party plugins NOT required for exploitation

This works with IE8 as well

Vista Protection Features
Part II:

© Copyright IBM Corporation 2007

Memory Protection Mechanisms

© Copyright IBM Corporation 2007

Memory Protection Mechanisms

Detect memory corruption:
– GS stack cookies
– SEH chain validation
– Heap corruption detection

Stop common exploitation patterns:
– GS (variable reordering)
– SafeSEH
– DEP
– ASLR

© Copyright IBM Corporation 2007

GS Stack Cookies

GS prevents the attacker from using an
overwritten return address on the stack

– Adds a stack cookie between the local variables and return
address

– Checks the cookie at the function epilogue

© Copyright IBM Corporation 2007

GS Variable Reordering

Prevents the attacker from overwriting other local
variables or arguments

– String buffers go above other variables
– Arguments copied below local variables

source code standard stack frame stack frame with /GS

void vuln(char* arg) buf copy of arg
{ i i

char buf[100]; return address buf
int i; arg stack cookie
strcpy(buf, arg); return address
... arg (unused)

}

© Copyright IBM Corporation 2007

SafeSEH

Prevents the attacker from using an overwritten
SEH record. Allows only the following cases:

– Handler found in SafeSEH table of a DLL
– Handler in a DLL linked without /SafeSEH

If DEP is disabled, we have one more case:
– Handler on a non-image page, but not on the stack

© Copyright IBM Corporation 2007

SEH Chain Validation

New protection in Windows Server 2008, much
more effective than SafeSEH

– Puts a cookie at the end of the SEH chain
– The exception dispatcher walks the chain and verifies that it

ends with a cookie
– If an SEH record is overwritten, the SEH chain will break

and will not end with the cookie
Present in Vista SP1, but not enabled

© Copyright IBM Corporation 2007

Data Execution Prevention (DEP)

Prevents the attacker from jumping to data:
– Uses the NX bit in modern CPUs
– Modes of operation

OptIn – protects only apps compiled with /NXCOMPAT. Default
mode on XP and Vista
OptOut – protects all apps unless they opt out. Default mode on
Server 2003 and 2008
AlwaysOn/AlwaysOff – as you’d expect

– DEP is always enabled for 64-bit processes
Internet Explorer on Vista x64 is still a 32-bit process with no DEP

© Copyright IBM Corporation 2007

Data Execution Prevention (DEP)

Can be enabled and disabled at runtime with
NtSetInformationProcess()

– Skape and Skywing’s attack against DEP
– Permanent DEP in Vista

Important: DEP does not prevent the program
from allocating RWX memory

© Copyright IBM Corporation 2007

Address Space Layout Randomization (ASLR)

Dramatically lowers exploit reliability
– Relies on nothing being statically placed

Several major components
– Image Randomization
– Heap Randomization
– Stack Randomization
– PEB/TEB Randomization

© Copyright IBM Corporation 2007

Address Space Layout Randomization (ASLR)

Binaries opted-in to ASLR will be randomized
– Configurable:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Con
trol\Session Manager\Memory Management\MoveImages

Stragegy 1: DLL randomization
– Random offset from 0x78000000 up to 16M chosen (“Image Bias”)
– DLLs packed together near the top of memory (First DLL Ending with

Image Bias)
– Known DLLs order also mixed up at boot time
– Constant across different processes (mostly..)

Strategy 2: EXE randomization
– Random image base chosen within 16M of preferred image base
– DLLs also use this strategy if “DLL Range” is used up

Granularity of Address Space: 64K

© Copyright IBM Corporation 2007

Address Space Layout Randomization (ASLR)

© Copyright IBM Corporation 2007

Address Space Layout Randomization (ASLR)

Heap randomization strategy: Move the heap base
– Address where heap begins is selected linearly with

NtAllocateVirtualMemory()
– Random offset up to 2M into selected region is used for real

heap base
– 64K alignment

Stack randomization strategy: Selecting a random
“hole” in the address space

– Random 5-bit value chosen (X)
– Address space searched X times for space to allocate the

stack
Stack base also randomized

– Stack begins at random offset from selected base (up to
half a page)

– DWORD aligned

Breaking Vista Protections
Part III:

© Copyright IBM Corporation 2007

Functions containing certain types of variables
are not protected:

– structures (ANI vulnerability)
– arrays of pointers or integers

void func(int count, int data)

{

int array[10];

int i;

for (i = 0; i < count; i++)

array[i] = data;

}

GS: Function Heuristics

© Copyright IBM Corporation 2007

The function might use overwritten stack data
before the cookie is checked:

callee saved registers

copy of pointer and string buffer arguments

local variables

string buffers o

gs cookie v

exception handler record e

saved frame pointer r

return address f

arguments l

o

stack frame of the caller w

GS: Use of Overwritten Data

© Copyright IBM Corporation 2007

Triggering an exception will give us control of
the program execution before the GS cookie
check.

– overwrite a pointer or counter variable

– overflow to the top of the stack

– application specific exceptions

SEH records on the stack are not protected by
GS, but we have to bypass SafeSEH.

GS: Exception Handling

© Copyright IBM Corporation 2007

Bypassing SafeSEH

If DEP is disabled, we can just point an
overwritten SEH handler to the heap

If DEP is enabled, SafeSEH protections can be
bypassed if a single unsafe DLL is loaded

– Flash9f.ocx

© Copyright IBM Corporation 2007

DEP OptIn

Vista runs in opt-in mode by default
– Applications need to specifically opt-in to receive DEP

protections
No need to bypass something that isn’t there..

– DEP not enabled in IE7 or Firefox 2
– IE8 and Firefox 3 opted-in

© Copyright IBM Corporation 2007

ASLR OptIn

Vista randomizes only binaries that opt-in
– A single non-randomized binary is sufficient to bypass

ASLR (and DEP)
Some major 3rd party plugins do not opt-in

– Flash
– Java

Microsoft does not utilize ASLR for all binaries
– .NET runtime!

© Copyright IBM Corporation 2007

Heap Spraying

Heap spraying
– JavaScript (bypasses ASLR)
– Java (bypasses ASLR and DEP)

© Copyright IBM Corporation 2007

Heap spraying can bypass ASLR
– Consume large amounts of address space with

controllable data
Only the beginning of the heap is randomized

– The maximum offset is 2MB
– If we allocate a chunk larger than 2MB, some part of it

will be at a predictable address

+3MB+2MB+0MB

Heap Spraying

© Copyright IBM Corporation 2007

JavaScript heap spraying
– Defeats ASLR (but not DEP)
64KB-aligned allocations allow us to put

arbitrary data at an arbitrary address
– Allocate multiple 1MB strings, repeat a 64KB pattern

64KB

64KB

Heap Spraying - JavaScript

© Copyright IBM Corporation 2007

Heap Spraying - Java

The Sun JVM allocates all memory RWX
– DEP not an issue
– ASLR mitigated

Executable heap spraying code:

public class Test extends Applet {
static String foo = new String("AAAA...");
static String[] a = new String[50000];

public void init() {
for (int i=0; i<50000; i++) {

a[i] = foo + foo;
}

}
}

© Copyright IBM Corporation 2007

Screenshot

0:031> !vadump

BaseAddress: 22cc0000

RegionSize: 058a0000

State: 00001000 MEM_COMMIT

Protect: 00000040 PAGE_EXECUTE_READWRITE

Type: 00020000 MEM_PRIVATE

Heap Spraying - Java

© Copyright IBM Corporation 2007

Stack Spraying

Alternative to heap spraying
– High degree of control over stack contents
– Creating pointers is simple too: objects/arrays/etc as

parameters/local variables
– Also usable to exhaust large parts of the address space

Stack size is controlled by the attacker in .NET
and Java!

– Thread constructors allow stack size of your choosing

© Copyright IBM Corporation 2007

Stack Spraying

Method 1: Generate Code
– Large amount of local variables
– Fill with executable code
– DEP will prevent execution, but this is also true of heap

spraying

© Copyright IBM Corporation 2007

Stack Spraying

Method 2: Overwrite Targets
– Fill the stack with useful pointers to overwrite
– Saved EIPs are probably most useful
– Create a recursive function to fill the entire stack
– Overwrite anywhere in the memory region for the win!

© Copyright IBM Corporation 2007

Stack Spraying

© Copyright IBM Corporation 2007

Stack Spraying

Method 3: Pointer Spraying
– Languages don’t allow pointer creation directly
– Declaring objects/arrays will create pointers
– Useful for exploits requiring indirection

© Copyright IBM Corporation 2007

Stack Spraying and ASLR

© Copyright IBM Corporation 2007

.NET and IE

IE allows embedding of .NET “User Controls”
– .NET equivalent of a Java applets
– Embedded in a web page using the <OBJECT> tag
<OBJECT classid="ControlName.dll#Namespace.ClassName">

– Unlike ActiveX, no warning in “Internet Zone”
User controls are .NET DLLs

– That’s right – DLLs can be embedded in web pages!
– Similar to native DLLs with some additional metadata
– They can’t contain native code (IL-Only)
– Loaded into the process with LoadLibrary

© Copyright IBM Corporation 2007

.NET shellcode

Loading User Controls is interesting in the context
of memory protections

– We can define memory region sizes
– Page protections are arbitrary
– In XP, Image base is directly controllable by the attacker
– On Vista, ASLR prevents direct load address control

IL-Only binaries are always randomized, despite opting out of ASLR
Load address can still be influenced

© Copyright IBM Corporation 2007

.NET Controls - Large DLLs
Large DLL Method 1

– Create a large DLL
(~100MB)

– Must consume less
than “Standard DLL
range”

– Approximate load
location easily
guessable

© Copyright IBM Corporation 2007

.NET Controls - Large DLLs
Large DLL Method 2

– Create even larger DLL
(~200MB)

– Approximate load
location easily
guessable

– Additional bonus:
Select addresses that
will bypass character
restrictions

© Copyright IBM Corporation 2007

.NET Controls - Large DLLs

Problem: 100M+ is too much to download
– Pages will take too long to load

Solution 1: Binary Padding
– For a given section, make the VirtualSize very large, and

SizeOfRawData 0 or small
– Zero-padded when mapped
– Repeating instruction “add byte ptr [eax], al”
– Needs EAX to point to writable memory

Solution 2: Compression
– HTTP can zip up content on the fly
– Achieved with Content-Encoding header

© Copyright IBM Corporation 2007

.NET Controls - Large DLLs
Large DLL Method 3

– Create large DLL
(Virtual Padding)

– Create smaller 16M
DLL with shellcode etc

– Compress smaller DLL
with HTTP

© Copyright IBM Corporation 2007

.NET Controls - Small DLLs
Small DLL Method

– Embed a large number
of small DLLs (4-8K)

– About 300 of them is
enough (~20M)

– They all get placed on
64K boundaries in
“Standard DLL Range”

– Target any one of the
DLLs in range

© Copyright IBM Corporation 2007

.NET Controls – Statically Located DLLs

Ideal situation is to have statically positioned,
self-supplied .NET DLLs
ASLR enforced on IL-Only binaries

– Loader checks if binary is a .NET IL-Only binary and
relocates it anyway (no opting out)

– Is this effective? Not quite…
Flagging an IL-Only binary depends on version
information read from .NET COR header!

© Copyright IBM Corporation 2007

.NET Controls – Statically Located DLLs

Statically position DLL in 3 Simple steps
– Opt out of ASLR (unset

IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE)
– Select ImageBase of your choosing
– Change version in COR header (2.5 -> 2.4 is sufficient)

Code from MiCreateImageFileMap():
if((pCORHeader->MajorRuntimeVersion > 2 ||

(pCORHeader->MajorRuntimeVersion == 2 && pCORHeader->MinorRuntimeVersion >= 5)) &&
(pCORHeader->Flags & COMIMAGE_FLAGS_ILONLY))

{
pImageControlArea->pBinaryInfo->pHeaderInfo->bFlags |= PINFO_IL_ONLY_IMAGE;

…
}

© Copyright IBM Corporation 2007

Demo

.NET Controls – Statically Located DLLs

Conclusion
Part IV:

© Copyright IBM Corporation 2007

Conclusion

Vista memory protections are ineffective at
preventing browser exploitation

– Large degree of control attacker has to manipulate process
environment

– Open plugin architecture
– Single point of failure

More work needed on secure browser architecture
– Google Chrome is an interesting new development

Questions?

