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Introduction

Thesis
– Vista protections are largely ineffective at preventing 

browser exploitation
Overview

– Whirlwind tour of Vista protection mechanisms
GS, SafeSEH, DEP, ASLR

– Techniques for exploiting protection limitations
All protections broken

– Conclusion
Full paper available at 
http://www.phreedom.org/research/
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Demo

Exploiting IE despite all protections on Vista
– ASLR and DEP turned on
– Third party plugins NOT required for exploitation

This works with IE8 as well

Vista Protection Features
Part II:
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Memory Protection Mechanisms



© Copyright IBM Corporation 2007

Memory Protection Mechanisms

Detect memory corruption:
– GS stack cookies
– SEH chain validation
– Heap corruption detection

Stop common exploitation patterns:
– GS (variable reordering)
– SafeSEH
– DEP
– ASLR
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GS Stack Cookies

GS prevents the attacker from using an 
overwritten return address on the stack

– Adds a stack cookie between the local variables and return 
address

– Checks the cookie at the function epilogue
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GS Variable Reordering

Prevents the attacker from overwriting other local 
variables or arguments

– String buffers go above other variables
– Arguments copied below local variables

source code standard stack frame stack frame with /GS

void vuln(char* arg) buf copy of arg
{ i i

char buf[100]; return address buf
int i; arg stack cookie
strcpy(buf, arg); return address
... arg (unused)

}



© Copyright IBM Corporation 2007

SafeSEH

Prevents the attacker from using an overwritten 
SEH record. Allows only the following cases:

– Handler found in SafeSEH table of a DLL
– Handler in a DLL linked without /SafeSEH

If DEP is disabled, we have one more case:
– Handler on a non-image page, but not on the stack
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SEH Chain Validation

New protection in Windows Server 2008, much 
more effective than SafeSEH

– Puts a cookie at the end of the SEH chain
– The exception dispatcher walks the chain and verifies that it 

ends with a cookie
– If an SEH record is overwritten, the SEH chain will break 

and will not end with the cookie
Present in Vista SP1, but not enabled

© Copyright IBM Corporation 2007

Data Execution Prevention (DEP)

Prevents the attacker from jumping to data:
– Uses the NX bit in modern CPUs
– Modes of operation

OptIn – protects only apps compiled with /NXCOMPAT. Default 
mode on XP and Vista
OptOut – protects all apps unless they opt out. Default mode on 
Server 2003 and 2008
AlwaysOn/AlwaysOff – as you’d expect

– DEP is always enabled for 64-bit processes
Internet Explorer on Vista x64 is still a 32-bit process with no DEP
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Data Execution Prevention (DEP)

Can be enabled and disabled at runtime with 
NtSetInformationProcess() 

– Skape and Skywing’s attack against DEP
– Permanent DEP in Vista

Important: DEP does not prevent the program 
from allocating RWX memory
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Address Space Layout Randomization (ASLR)

Dramatically lowers exploit reliability
– Relies on nothing being statically placed

Several major components
– Image Randomization
– Heap Randomization
– Stack Randomization
– PEB/TEB Randomization
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Address Space Layout Randomization (ASLR)

Binaries opted-in to ASLR will be randomized
– Configurable: 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Con
trol\Session Manager\Memory Management\MoveImages

Stragegy 1: DLL randomization
– Random offset from 0x78000000 up to 16M chosen (“Image Bias”) 
– DLLs packed together near the top of memory (First DLL Ending with 

Image Bias)
– Known DLLs order also mixed up at boot time
– Constant across different processes (mostly..)

Strategy 2: EXE randomization
– Random image base chosen within 16M of preferred image base
– DLLs also use this strategy if “DLL Range” is used up

Granularity of Address Space: 64K
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Address Space Layout Randomization (ASLR)

© Copyright IBM Corporation 2007

Address Space Layout Randomization (ASLR)

Heap randomization strategy: Move the heap base
– Address where heap begins is selected linearly with 

NtAllocateVirtualMemory()
– Random offset up to 2M into selected region is used for real 

heap base
– 64K alignment

Stack randomization strategy: Selecting a random 
“hole” in the address space

– Random 5-bit value chosen (X)
– Address space searched X times for space to allocate the 

stack
Stack base also randomized

– Stack begins at random offset from selected base (up to 
half a page)

– DWORD aligned

Breaking Vista Protections
Part III:
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Functions containing certain types of variables 
are not protected:

– structures (ANI vulnerability)
– arrays of pointers or integers

void func(int count, int data)

{

int array[10];

int i;

for (i = 0; i < count; i++)

array[i] = data;

}

GS: Function Heuristics
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The function might use overwritten stack data 
before the cookie is checked:

callee saved registers

copy of pointer and string buffer arguments

local variables

string buffers               o

gs cookie                    v

exception handler record     e

saved frame pointer          r

return address               f

arguments                    l

o

stack frame of the caller    w

GS: Use of Overwritten Data
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Triggering an exception will give us control of 
the program execution before the GS cookie 
check.

– overwrite a pointer or counter variable

– overflow to the top of the stack

– application specific exceptions

SEH records on the stack are not protected by 
GS, but we have to bypass SafeSEH.

GS: Exception Handling
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Bypassing SafeSEH

If DEP is disabled, we can just point an 
overwritten SEH handler to the heap

If DEP is enabled, SafeSEH protections can be 
bypassed if a single unsafe DLL is loaded

– Flash9f.ocx
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DEP OptIn

Vista runs in opt-in mode by default
– Applications need to specifically opt-in to receive DEP 

protections
No need to bypass something that isn’t there..

– DEP not enabled in IE7 or Firefox 2
– IE8 and Firefox 3 opted-in
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ASLR OptIn

Vista randomizes only binaries that opt-in
– A single non-randomized binary is sufficient to bypass 

ASLR (and DEP)
Some major 3rd party plugins do not opt-in 

– Flash
– Java

Microsoft does not utilize ASLR for all binaries
– .NET runtime!
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Heap Spraying

Heap spraying
– JavaScript (bypasses ASLR)
– Java (bypasses ASLR and DEP)
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Heap spraying can bypass ASLR
– Consume large amounts of address space with 

controllable data
Only the beginning of the heap is randomized

– The maximum offset is 2MB
– If we allocate a chunk larger than 2MB, some part of it 

will be at a predictable address

+3MB+2MB+0MB

Heap Spraying
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JavaScript heap spraying
– Defeats ASLR (but not DEP)
64KB-aligned allocations allow us to put     

arbitrary data at an arbitrary address
– Allocate multiple 1MB strings, repeat a 64KB pattern

64KB

64KB

Heap Spraying - JavaScript
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Heap Spraying - Java

The Sun JVM allocates all memory RWX
– DEP not an issue
– ASLR mitigated

Executable heap spraying code:

public class Test extends Applet {
static String foo = new String("AAAA...");
static String[] a = new String[50000];

public void init()  {
for (int i=0; i<50000; i++) {

a[i] = foo + foo;
}

}
}
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Screenshot

0:031> !vadump

BaseAddress:       22cc0000

RegionSize:        058a0000

State:             00001000  MEM_COMMIT

Protect:           00000040  PAGE_EXECUTE_READWRITE

Type:              00020000  MEM_PRIVATE

Heap Spraying - Java
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Stack Spraying

Alternative to heap spraying
– High degree of control over stack contents
– Creating pointers is simple too: objects/arrays/etc as 

parameters/local variables
– Also usable to exhaust large parts of the address space

Stack size is controlled by the attacker in .NET 
and Java!

– Thread constructors allow stack size of your choosing
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Stack Spraying

Method 1: Generate Code
– Large amount of local variables
– Fill with executable code
– DEP will prevent execution, but this is also true of heap 

spraying
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Stack Spraying

Method 2: Overwrite Targets
– Fill the stack with useful pointers to overwrite
– Saved EIPs are probably most useful
– Create a recursive function to fill the entire stack
– Overwrite anywhere in the memory region for the win!
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Stack Spraying
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Stack Spraying

Method 3: Pointer Spraying
– Languages don’t allow pointer creation directly
– Declaring objects/arrays will create pointers
– Useful for exploits requiring indirection
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Stack Spraying and ASLR
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.NET and IE

IE allows embedding of .NET “User Controls”
– .NET equivalent of a Java applets
– Embedded in a web page using the <OBJECT> tag
<OBJECT classid="ControlName.dll#Namespace.ClassName">

– Unlike ActiveX, no warning in “Internet Zone”
User controls are .NET DLLs

– That’s right – DLLs can be embedded in web pages!
– Similar to native DLLs with some additional metadata
– They can’t contain native code (IL-Only)
– Loaded into the process with LoadLibrary
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.NET shellcode

Loading User Controls is interesting in the context 
of memory protections

– We can define memory region sizes
– Page protections are arbitrary
– In XP, Image base is directly controllable by the attacker
– On Vista, ASLR prevents direct load address control

IL-Only binaries are always randomized, despite opting out of ASLR
Load address can still be influenced
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.NET Controls - Large DLLs
Large DLL Method 1

– Create a large DLL 
(~100MB)

– Must consume less 
than “Standard DLL 
range”

– Approximate load 
location easily 
guessable
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.NET Controls - Large DLLs
Large DLL Method 2

– Create even larger DLL 
(~200MB)

– Approximate load 
location easily 
guessable

– Additional bonus: 
Select addresses that 
will bypass character 
restrictions
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.NET Controls - Large DLLs

Problem: 100M+ is too much to download
– Pages will take too long to load

Solution 1: Binary Padding
– For a given section, make the VirtualSize very large, and 

SizeOfRawData 0 or small
– Zero-padded when mapped
– Repeating instruction “add byte ptr [eax], al”
– Needs EAX to point to writable memory

Solution 2: Compression
– HTTP can zip up content on the fly
– Achieved with Content-Encoding header
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.NET Controls - Large DLLs
Large DLL Method 3

– Create large DLL 
(Virtual Padding)

– Create smaller 16M 
DLL with shellcode etc

– Compress smaller DLL 
with HTTP
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.NET Controls - Small DLLs
Small DLL Method

– Embed a large number 
of small DLLs (4-8K)

– About 300 of them is 
enough (~20M)

– They all get placed on 
64K boundaries in 
“Standard DLL Range”

– Target any one of the 
DLLs in range



© Copyright IBM Corporation 2007

.NET Controls – Statically Located DLLs

Ideal situation is to have statically positioned, 
self-supplied .NET DLLs
ASLR enforced on IL-Only binaries

– Loader checks if binary is a .NET IL-Only binary and 
relocates it anyway (no opting out)

– Is this effective? Not quite…
Flagging an IL-Only binary depends on version 
information read from .NET COR header!
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.NET Controls – Statically Located DLLs

Statically position DLL in 3 Simple steps
– Opt out of ASLR (unset 

IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE)
– Select ImageBase of your choosing
– Change version in COR header (2.5 -> 2.4 is sufficient)

Code from MiCreateImageFileMap():
if( (pCORHeader->MajorRuntimeVersion > 2 || 

(pCORHeader->MajorRuntimeVersion == 2 && pCORHeader->MinorRuntimeVersion >= 5) ) &&
(pCORHeader->Flags & COMIMAGE_FLAGS_ILONLY) )

{
pImageControlArea->pBinaryInfo->pHeaderInfo->bFlags |= PINFO_IL_ONLY_IMAGE;

…
}
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Demo

.NET Controls – Statically Located DLLs



Conclusion
Part IV:
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Conclusion

Vista memory protections are ineffective at 
preventing browser exploitation

– Large degree of control attacker has to manipulate process 
environment

– Open plugin architecture 
– Single point of failure

More work needed on secure browser architecture
– Google Chrome is an interesting new development

Questions?


