
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Review

- Introduction to cryptography
- Symmetric-key encryption \qquad
- One-time pad
- Block cipher
-DES
» Fiestel Networks
\qquad
-AES

Today

- Modes of operation for Block ciphers
- Administrative matters \qquad
- Modular Arithmetic
- Asymmetric-key encryption

Block-cipher Modes of Operation

- Block-cipher has fixed block size
- How to encrypt arbitrary length msgs using a block cipher?
- How to ensure the same plaintext when encrypted/sent twice, will result in different ciphertexts?
- Different block-cipher modes of operation Encryption scheme
» Randomized, i.e., flips a coin
» Stateful, i.e., depending upon state info
- Decryption scheme
» Neither randomized nor stateful
" Why?

Examples of Block-Cipher Modes of Operation

- ECB: Electronic code book
- CBC: Cipher block chaining \qquad
- OFB: Output feedback
- CTR: Counter mode \qquad
\qquad
\qquad

Electronic Code Book (ECB) Mode

\qquad
\qquad
\qquad
\qquad
\qquad

- Same plaintext always corresponds to same ciphertext
- Traffic analysis yields which ciphertext blocks are equal \rightarrow know which plaintext blocks are equal
- $\mathrm{C}_{\mathrm{j}}=\left\{\mathrm{P}_{\mathrm{j}} \oplus \mathrm{C}_{\mathrm{j}-1}\right\}_{\mathrm{K}}$
- $\mathrm{C}_{0}=\mathrm{IV}$ (initialization vector)
teresting fact

- Altered ciphertext only influences two blocks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Output Feedback (OFB) Mode \qquad

- $\mathrm{X}_{1}=\mathrm{IV}$ (initialization vector)
- $X_{j}=\left\{X_{j-1}\right\}_{k}$
- $C_{j}=X_{j+1} \oplus P_{j}$

- Altered ciphertext only influences single block
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Modular Arithmetic

\qquad

- a + b mod s
- a*b mod s \qquad
- $a^{b} \bmod s$
how to compute $a^{25} \operatorname{mods}$? \qquad
- Repeated squaring
" $a^{16} * a^{8} a^{1} \bmod s$

Modular Division

How to compute 1/a mod s?
-What does it mean? \qquad
$-\mathrm{ax} \equiv 1 \mathrm{mod} \mathrm{s}$

- Can it always be computed?
\qquad
-iff gcd (a,s) = 1
- How?

Extended Euclidean algorithm

Euclidean Algorithm

- Compute gcd (a,b)
- Lemma If $\mathbf{a}>\mathbf{b}$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(a \bmod b, b)$ -Why?
- Euclid algorithm:
$-b \leq a$,
- Euclid (a,b) = Euclid (b, a mod b) if $b \neq 0$ or \mathbf{a} if $\mathrm{b}=0$

Extended Euclidean Algorithm

- For any positive integers \mathbf{a}, b, the extended Euclidean algorithm returns integers \mathbf{x}, \mathbf{y} such that $a x+b y=\operatorname{gcd}(a, b)$
How to use it to compute x such that $a x \equiv 1 \bmod \mathrm{~s}$?
$\operatorname{gcd}(a, s)=1$, thus can compute x, y s.t.
$a x+s y=1$
- Thus, ax $\equiv 1$ mod s

\qquad

Advantage of Public-Key Crypto

Consider N parties, how can any pair of them establish a secret key?

- To use symmetric-key crypto, requires secret and authentic channel to set up shared secret key \qquad
- Need O(\mathbf{N}^{2}) keys
- Key management is challenging \qquad
- Public-key crypto advantage
- Each party only needs to know N -1 authentic public keys

Asymmetric-key Encryption

- encryption-Key \neq decryption-Key
- Alice has public key: pub_key, private key: \qquad priv_key
- Bob wants to send Alice message M \qquad
- C = E(pub_key, M);
- M = D(priv_key, C) \qquad
\qquad
\qquad
\qquad

Asymmetric cryptography

- encryption-Key \neq decryption-Key
- We cannot simply run operations backwards \qquad
Some things are hard to reverse

Multiplication

Easy to multiply two large primes
Hard to factor
» Factoring up to 663 bits (200 digits) now demonstrated - Intensive computing; record set in May 2005
» More efficient factoring methods unknown

Using hard problems to make crypto

- Gauss (building on work by Fermat) proved - If p and q are primes and
- If m is not a multiple of p or q
- Then $\mathrm{m}^{(\mathrm{p}-1)(\mathrm{q}-1)}=1 \mathrm{mod} \mathrm{pq}$
- Example, $\mathrm{p}=3, \mathrm{q}=5, \mathrm{pq}=15,(\mathrm{p}-1)(\mathrm{q}-1)=8$
$1^{8}=1=1 \bmod 15$ \qquad
$2^{8}=256=1 \bmod 15$
$-4^{8}=65536=1$ mod 15
$-7^{8}=5764801=1 \bmod 15$
$-8^{8}=16777216=1 \bmod 15$
$-11^{8}=214358881=1 \bmod 15$
$-13^{8}=815730721=1 \bmod 15$
$-14^{8}=1475789056=1 \bmod 15$

RSA

- Rivest, Shamir, Adleman (1978 - published 1979)
- Idea:
- Let p, q be large secret primes, $\mathrm{N}=\mathrm{pq}$
- Given e, find d, such that ed $\equiv 1 \bmod \phi(N)$, where $\phi(N)=(p-1)(q-1)$
- public key: e, N
- private key: d, p, q
- Encryption: $c=E(m)=m^{e} \bmod p q$
- Decryption: D(c) = $c^{d} \bmod p q$

So $D(E(m))=m^{\text {ed }} \bmod p q=m^{K(p-1)(q-1)+1} \bmod p q=m$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5-min Break

- Is RSA encryption secure?

Discussion (I)

- Mallory knows e, so why doesn't she simply compute the $\mathrm{e}^{\text {th }}$ root to recover the plaintext? E.g., $\left(M^{\mathrm{e}} \bmod \mathrm{N}\right)^{1 / \mathrm{e}}=\mathrm{M}$?
- What if Mallory can find $\phi(N)$?
- Then she can compute secret value d
- Is finding $\phi(N)$ equivalent to factoring?
- Yes! Consider the equation (X-p)(X-q) $=0$
- Note: $N-\phi(N)+1=p+q$
$-\mathrm{X}^{2}-(\mathrm{p}+\mathrm{q}) \mathrm{X}+\mathrm{pq}=\mathrm{x}^{2}-(\mathrm{N}-\phi(\mathrm{N})+1) \mathrm{X}+\mathrm{N}$
$-p$ and q can be found by solving quadratic equation
- RSA assumption: finding e-th root $\bmod \mathbf{N}$ is hard when factorization of \mathbf{N} is unknown

Discussion (II)

- Short plaintext attack:
- Consider RSA with n of size 1024 bits, $\mathrm{e}=3$
- Let's encrypt AES key, secure?

No! 128-bit AES key raised to third power only results in 384-bit \#, $\bmod \mathbf{n}$ does not reduce the result, attacker can simply compute cube root over integers

- What other security issues does RSA have?
- E.g., deterministic, same plaintext always encrypt to same ciphertext

How to Fix?

- Padding:

```
- Pad short plaintext to block size
- Add randomness
- Can't just do random padding
- E.g., given data D, pad message \(m\) to be \(m=00|02| r|00| D\), where \(r\) is a random number of appropriate length
- Bleichenbacher found an attack (1998)
- Standard: OAEP (Optimal Asymmetric Encryption Padding)
- With a formal proof of security
```

\qquad

