Asymmetric-key Encryption

Dawn Song dawnsong@cs.berkeley.edu

Review

- Introduction to cryptography
- Symmetric-key encryption
- One-time pad
- Block cipher
 - DES » Fiestel Networks

- AES

Today

- Modes of operation for Block ciphers
- Administrative matters
- Modular Arithmetic
- Asymmetric-key encryption

Block-cipher Modes of Operation

- Block-cipher has fixed block size
- How to encrypt arbitrary length msgs using a block cipher?
- How to ensure the same plaintext when encrypted/sent twice, will result in different ciphertexts?
- Different block-cipher modes of operation

Encryption scheme

- » Randomized, i.e., flips a coin
- » Stateful, i.e., depending upon state info
- Decryption scheme
 - » Neither randomized nor stateful
 - » Why?

Examples of Block-Cipher Modes of Operation

- ECB: Electronic code book
- CBC: Cipher block chaining
- OFB: Output feedback
- CTR: Counter mode

- a + b mod s
- a*b mod s
- a^b mod s
 - how to compute a25 mod s ?
 - Repeated squaring
 » a¹⁶ * a⁸ * a¹ mod s

Modular Division

- How to compute 1/a mod s?
- What does it mean?
 - $-ax \equiv 1 \mod s$
- Can it always be computed? - iff gcd (a,s) = 1
- How?
 - Extended Euclidean algorithm

12

Euclidean Algorithm

- Compute gcd (a,b)
- Lemma If a > b, then gcd(a,b) = gcd (a mod b, b) - Why?
- Euclid algorithm:
 - b≤ a,
 - Euclid (a,b) = Euclid (b, a mod b) if $b \neq 0$ or a if b = 0

13

14

Extended Euclidean Algorithm

- For any positive integers a, b, the extended Euclidean algorithm returns integers x, y such that ax + by = gcd (a,b)
- How to use it to compute x such that
- $ax \equiv 1 \mod s?$
- gcd (a,s) = 1, thus can compute x, y s.t. ax + sy = 1
 - Thus, ax \equiv 1 mod s

Asymmetric-key Crypto

- Symmetric cryptography: both parties share the same key
 - Secret key (or shared key) only known to communicating parties
- Asymmetric cryptography: each party has a public and a private key
 - Public key known to everyone
 - Private key only known to owner
- Requirements for secure communication
 - Symmetric crypto: key is secret and authentic
 - Asymmetric crypto: private key is secret and public key is authentic

Advantage of Public-Key Crypto

- Consider N parties, how can any pair of them establish a secret key?
 - To use symmetric-key crypto, requires secret and authentic channel to set up shared secret key
 - Need O(N²) keys
 - -Key management is challenging
- Public-key crypto advantage
 - Each party only needs to know N-1 authentic public keys

Asymmetric-key Encryption

- encryption-Key ≠ decryption-Key
- Alice has public key: pub_key, private key: priv_key
- Bob wants to send Alice message M
- C = E(pub_key, M);
- M = D(priv_key, C)

Asymmetric cryptography

- encryption-Key ≠ decryption-Key
- We cannot simply run operations backwards
- Some things are hard to reverse
 - Multiplication
 - » Easy to multiply two large primes
 - » Hard to factor
 - » Factoring up to 663 bits (200 digits) now demonstrated • Intensive computing; record set in May 2005
 - » More efficient factoring methods unknown

18

- 14⁸ = 1475789056 = 1 mod 15

RSA

- Rivest, Shamir, Adleman (1978 published 1979)
- Idea:
 - Let p, q be large secret primes, N = pq
 - Given e, find d, such that $ed \equiv 1 \mod \phi(N)$, where $\phi(N)=(p-1)(q-1)$
 - public key: e, N
 - private key: d, p, q
 - Encryption: c = E(m) = m^e mod pq

 - Decryption: $D(c) = c^d \mod pq$ So $D(E(m)) = m^{ed} \mod pq = m^{K(p-1)(q-1)+1} \mod pq = m$

5-min Break

• Is RSA encryption secure?

Discussion (I)

- Mallory knows e, so why doesn't she simply compute the eth root to recover the plaintext? E.g., (M^e mod N)^{1/e} = M?
- What if Mallory can find φ(N)? - Then she can compute secret value d
- Is finding φ(N) equivalent to factoring? - Yes! Consider the equation (X-p)(X-q) = 0
 - -Note: N $\phi(N)$ + 1 = p+q
 - $-X^{2} (p+q)X + pq = X^{2} (N \phi(N) + 1)X + N$
 - p and q can be found by solving quadratic equation
- RSA assumption: finding e-th root mod N is hard when factorization of N is unknown

Discussion (II)

Short plaintext attack:

- Consider RSA with n of size 1024 bits, e=3
- Let's encrypt AES key, secure?
 - No! 128-bit AES key raised to third power only results in 384-bit #, mod n does not reduce the result, attacker can simply compute cube root over integers
- What other security issues does RSA have?
 - E.g., deterministic, same plaintext always encrypt to same ciphertext

How to Fix?

- Padding:
 - Pad short plaintext to block size
 - Add randomness
- Can't just do random padding
 - E.g., given data D, pad message m to be m= 00 | 02 | r | 00 | D, where r is a random number of appropriate length
 - Bleichenbacher found an attack (1998)
- Standard: OAEP (Optimal Asymmetric **Encryption Padding**)
 - With a formal proof of security

24