Hash Functions, MACs, Digital Signatures

Dawn Song dawnsong@cs.berkeley.edu

Review

• Modes of Operations for Block Ciphers – How to encrypt long messages

Public-key encryption

 RSA
 Why textbook RSA is not secure?

How to Fix?

• Padding:

- Pad short plaintext to block size

- Add randomness
- Can't just do random padding
 - E.g., given data D, pad message m to be m= 00 | 02 | r | 00 | D, where r is a random number of appropriate length
 - Bleichenbacher found an attack (1998)
- Standard: OAEP (Optimal Asymmetric Encryption Padding)
 - With a formal proof of security

Sample Applications

Integrity check for storage

Commitment

Hash Function Properties

Hash function: a function h with properties

- Compression: h maps an input x of arbitrary length to an output h(x) of a fixed length
- Ease of computation: given h and x, it's easy to compute h(x)
- Additional important properties
 - Preimage resistance
 - 2nd-preimage resistance
 - Collision resistance

Three Properties

Preimage resistance

- For any y (in the range of h) for which a corresponding input is not known, it is computationally infeasible to find any input x such that h(x) = y.
- 2nd-preimage resistance
 - It is computationally infeasible to find any second input which has the same output as any specified input, i.e., given x, to find x'≠ x s.t. h(x) = h(x')
- Collision resistance
 - It is computationally infeasible to find any two distinct inputs x and x' which has to the same output, i.e., h(x) = h(x')

Examples

RSA-based one-way function

- $-f(x) = x^e \mod N$, where factorization of N is unknown
- Under RSA assumption, f(x) is preimage resistant
- What about 2nd-preimage resistance?

DES-based one-way fucntion

- $-f(x) = E(k, x) \oplus x$, for any fixed known key k.
- Under the assumption that E is a random permutation, f(x) is preimage resistant

Relationships btw Properties (I)

• Does collision resistance imply 2nd-preimage resistance?

– yes

• Does preimage resistance imply 2nd-preimage resistance?

– No

• Does 2nd-preimage resistance imply preimage resistance?

– No

Relationships btw Properties (II)

- Does collision-resistance imply preimage resistance?
 - E.g., let g be a hash function which is collision resistant and maps arbitrary-length inputs to n-bit outputs. Consider function h:
 - h(x) = 1 || x, if x has bitlength n0 || g(x), o.w.
 - Is h collision resistant?
 - Is h preimage resistant?
- Different applications need different properties ٠

Cryptographic Hash Functions

- MD5

 - Output 128-bit
 Designed by Ron Rivest, 1991
 - Xiaoyun Wang et. al. found collision in one hour using IBM p690 cluster, 2004
 - Klima find collision with one minute on a notebook computer, using tunneling, 2006
- SHA-1
 - Output 160-bit

 - Designed by NSA, adopted by NIST, 1993
 Xiaoyun Wang et. al. found attack on SHA-1, 2005
 - Requiring fewer than 2⁶⁹ operations to find a collision, whereas brute force would require 2⁸⁰ operations - More improvements on attacks
- NIST is looking for new hash functions
 - Similar competition as in AES
 - Submissions due Oct 31, 2008

Message Authentication Code (MAC)

- Encryption: secrecy/confidentiality
- What if Mallory tries to change the message?
- Can encryption alone help?
- What about adding a checksum?
- Message authentication code (MAC)
 - Provides assurance of source & integrity of msg (data origin authentication)
 - f(k, M) = f_k(M), k is secret key
 - Unforgeability:
 - For any fixed value of k unknown to adversary, given a set of values $(x_{i_1}, f_k(x_{i_1}))$, it is computationally infeasible to compute $f_k(x)$ for any new input x.
- Sample construction: HMAC
 - HMAC(x)= h((k \oplus r)||h((k \oplus s)||x)), r and s are random numbers

12

Secure Two-party Communication

- Confidentiality
- Integrity
- For a message m, send Enc(k1, m), MAC(k2, Enc(k1, m))

 Alice and Bob share k1 and k2
- Is the problem solved?

Replay attacks

- Cryptosystems are vulnerable to replay attacks
- Record message; playback later identically - "Yes"/"No"
- Solution: use nonces (random bits; timestamp) etc.
 - Freshness property
- Message is <text, timestamp>

Digital Signatures

MACs

- Only parties who have the shared key can verify data integrity & origin
- Symmetric-key model
- Digital signatures
 - Asymmetric-key model
 - Sender has public/private key
 - Anybody with public key can verify data integrity & origin---non-repudiation
 - Applications
 - » Broadcast setting
 - Proof of endorsement
 Comparison with physical signatures

15

13

14

RSA Signature

- Idea:
 - Let p, q be large secret primes, N = pq
 - Given e, find d, such that ed = 1 mod $\phi(N)$, where $\phi(N)=(p-1)(q-1)$
 - -public key: e, N
 - private key: d, p, q
 - Signature: s = h(m)^d mod N
 - -Verification: s^e ?= h(m) mod N
- What if h is not collision-resistant?
- In practice, RSA-PKCS (public-key cryptography standards)

16