Authentication and Key Distribution

Dawn Song dawnsong@cs.berkeley.edu

Review

- Hash functions
 Different cryptographic properties
- MAC functions
- Digital signatures

Obtaining Public Key

- Public-key encryption and digital signature both require knowing the mapping: (name, pub_key)
 – Why?
- How do we obtain this mapping securely?

PKI Terminology

- PKI: Public Key Infrastructure
- CA: Certificate Authority (similar to TTP (Trusted Third Party) in symmetric-key protocols)
- A public-key certificate (or simply "certificate") binds a name to a public key
- Certificate repository: stores certificates
- Trust anchor: certificates of public keys that are trusted to sign other certificates

Authentication and Key Establishment Protocols

- Client C and Server S want to securely communicate with each other
 - Each knows the other's public key
 - -How?
- Public-key encryption is much more expensive than symmetric-key encryption
 - Establish session key: shared secret for the session
 How?

What May Go Wrong?

Desired security property

- Confidentiality
- Integrity
- Authenticity

Protocol Analysis

- Analyze high level security properties
 - Secrecy
 - Authentication
 - Atomicity
 - Non-repudiation
- Assume cryptographic primitives secure
 - Signature: secure against existential forgery
 - Public key/Private key encryption: secure against adaptive chosen-ciphertext attack
- Security protocols are notoriously hard to get right

12

Active Attacker

- · An active attacker may
 - Eavesdrop on previous protocol runs, even on protocol runs by other principals, replay messages at a later time
 - Inject messages into the network, e.g., fabricated from pieces of previous messages
 - Alter or delete a principal's messages
 - Initiate multiple parallel protocol sessions
 - Run dictionary attack on passwords
 - Run exhaustive attack on low-entropy nonce

SSL / TLS

- Goal: Perform secure e-commerce across
 Internet
 - Secure bank transactions
 - Secure online purchases
 - Secure web login (e.g., Blackboard)
- Security requirements
 - Secrecy to prevent eavesdroppers to learn sensitive information
 - Entity and message authentication to prevent message alteration / injection

SSL History

- SSL: Secure Sockets Layer protocol
- SSL v1: Designed by Netscape, never deployed
- SSL v2: Deployed in Netscape Navigator 1.1 in 1995
- SSL v3: Substantial overhaul, fixing security flaws, publicly reviewed
- TLS: Transport Layer Security protocol
- TLS v1: IETF standard improving on v3

5-min Break

Wait list

• In-class final, Dec 10

CDH and DDH

Computational Diffie Hellman (CDH) Assumption

- Given large prime p, generator g, $x=g^a \mod p$, $y=g^b \mod p$ it is difficult to compute $g^{ab} \mod p$.
- Decisional Diffie Hellman (DDH) Assumption
 - Given large prime p, generator g, $x=g^a \mod p$, $y=g^b \mod p$, $z=g^r \mod p$ it is difficult to determine whether $z = g^{ab} \mod p$.

21

