
1

Secret-Sharing & Zero-knowledge Proof

Dawn Song
dawnsong@cs.berkeley.edu

2

Review
• DH key exchange protocol

• Password authentication protocol

• Random number generation

3

Lessons Learned
• Seeds must be unpredictable

• Algorithm for generating pseudorandom bits
must be secure

4

Generating Pseudorandom Numbers

• True random number generator (TRNG)
– Generates bits that are distributed uniformly at

random, so that all outputs are equally likely, with
no patterns, correlations, etc.

• Cryptographically secure pseudorandom
number generator (CS-PRNG)

– Taking a short true-random seed, and generates
long sequence of bits that is computationally
indistinguishable from true random bits

5

CS-PRNG
• CS-PRNG: cryptographically secure

pseudorandom number generator
– G: maps a seed to an output G(S)

» E.g., G: {0,1}128 -> {0,1}1000000

– Let K denote a random variable distributed uniformly at
random in domain of G

– Let U denote a random variable distributed uniformly at
random in range of G

– G is secure if output G(K) is computationally
indistinguishable from U

• Sample construction
– Use the seed as a key k, and compute AES-CBC(k, 0n)

6

TRNG (I)
• TRNG should be random and unpredictable
• Good or bad choices?

– IP addresses
– Contents of network packets
– Process IDs
– High-speed clock
– Soundcard
– Keyboard input
– Disk timings

7

TRNG (II)
• How to convert non-uniform sources of

randomness into TRNG?
– Use a cryptographic hash function, such as SHA1
– Suppose x is a value from an imperfect source, or a

concatenation of values from multiple sources, and it
is impossible for an attacker to predict the exact value
x except with probability 1/2n

– Then hash(x) truncated to n bits should provide a n-bit
value that is uniformly distributed, if hash() is secure

8

Secret Sharing
• A trusted authority TA has a secret K
• Wants to split K into n shares S1, …, Sn,

distributing to n users U1,…,Un respectively, s.t.
– A reconstruction algorithm can be used to efficiently

reconstruct K from any t of the n shares
– Any t-1 of the n shares reveal no information about K

• Such a scheme is called an (n,t) threshold secret
sharing scheme

9

(n,n) Secret Sharing Scheme
• Suppose the secret K is an integer btw 0 and M-1
• (n,n) threshold scheme:

– Pick S1,…,Sn-1 uniformly at random btw 0 and M-1
– Set Sn = K- (S1 + … + Sn-1) mod M

• How to reconstruct K?
• What happens if n-1 users get together?

10

(n,t) Threshold Scheme
• Polynomials modulo prime p

– Polynomials whose coefficients are elements mod p
– E.g., f(x) = x2 + 2x + 4 mod 5
– Degree-n polynomial f (mod p) is uniquely determined

by any n+1 distinct pairs (xi, yi) s.t. f(xi) = yi
» Lagrange interpolation

• To (n,t) threshold share secret K:
– Pick a random polynomial f (mod p) of degree t-1 s.t.

f(0) = K
– Share si = f(i) for i = 1 to n
– How to recover K?
– How many shares do you need to recover K?
– What happens if you have fewer shares than t?

11

Administravia
• Hw1 hand-in procedure

12

Zero-knowledge Proof
• Alice->Bob: I know the solution to Que 3 in hw 1,

but I can’t tell you what the solution is
• Bob->Alice: tell me, o.w. I don’t believe you
• Alice->Bob: Ok, I’ll prove to you that I know the

solution in Zero-knowledge

13

Zero-knowledge protocol
• Idea: (interactive) proof btw prover A & verifier B
• At the end of the proof, B is convinced A knows

a secret satisfying a fact F
• But B has no information about that secret

14

The Zero-knowledge Cave (I)

• Alice wants to prove to Bob that she knows how
the magic word to open door

– Without telling Bob the magic word

door

15

The Zero-knowledge Cave (II)

1. Alice walks to either C or D;
2. Bob stands at V, calling either Left or Right;
3. Alice complies, using her magic word to open door if needed;
4. Alice & Bob repeats steps 1-3 for n times

C D

V

16

The Zero-knowledge Cave (III)

• What if Alice didn’t know the magic word?

• What does Bob learn at the end of the proof?

C D

V

17

How to prove knowledge of square root
• Finding square root mod N=pq is as hard as factoring
• A knows b s.t. b2 =y mod pq, & wishes to prove to B

that she knows such b.
• A → B: s =: r2 mod pq (A picks random r)
• B flips coin
• B → A: coin flip
• If heads

– A → B: t =: r mod pq
– B verifies t2 ≡ s mod pq

• If tails
– A → B: t =: rb mod pq
– A verifies t2 ≡ sy mod pq

• What if A didn’t know the square root?
• What did B learn after the proof?

