Midterm Review (I): Crypto

Dawn Song dawnsong@cs.berkeley.edu

Formal/Advanced Crypto

- This class is a quick intro
- Interested in further study

Crypto class

- » Formal definitions & proofs
- » Advanced algorithms & protocols

Class & midterm will be self-contained

Basic Background

- Probability calculation as seen in hw – E.g., Birthday paradox
- Basic algebric calculation as seen in hw

Attacker's Mindset

A lot of security training is about "attacker mindset"

- Given a design (e.g., protocol), find attacks

Important for designing secure systems

Security Design & Evaluation

· Security goals - CIA: confidentiality, integrity, availability

- Threat model - Assumptions about attacker
- · Security analysis

Symmetric-key Encryption

- What security goal does it achieve?
- Confidentiality
- Threat model
 - Known ciphertext attack
 - Known plaintext attack
 - Chosen plaintext attack (CPA)
 Chosen ciphertext attack (CCA)
- One-time pad
 - How does it work?
 - What security property does it achieve?
 » Attacker without computation limitation

 - Requirement for security
 - Key is same length as message
 Cannot reuse key

Ciphers

Stream cipher

- How does it work?

 What's the difference btw stream cipher & one-time pad?
 » Stream cipher is secure assuming attacker is polynomial time bounded

Block cipher

- Modes of operation
 - » How does each mode work?
 - » Disadvantage of ECB
 - Same plaintext always encrypt to same ciphertext » Security requirements for CBC, OFB, CTR
 - Cannot reuse IV

Asymmetric-key Crypto

- Advantages over symmetric-key crypto
- Disadvntages over symmetric-key crypto
 - Performance overhead
- Additional requirements
 PKI
- RSA
 - How does it work?
 - Why is textbook RSA not a secure encryption scheme?
 » Deterministic, short-plaintext attack

Hash Function

- Security properties
 - Preimage resistance
 - 2nd-preimage resistance
 - Collision resistance
 - What do they mean and when to use which one?

Message Authentication Code (MAC)

- Security property
 - Unforgeability
 - » What does it mean?
- What security goal does it achieve?
 - Integrity

Digital Signature

- Security property – Unforgeability
- What security goal does it achieve? – Data integrity & non-repudiation
- How to compare MAC with Digital Signature?
- Additional requirements

 PKI
- RSA signature scheme

Authentication & Key Distribution

Attacks on security protocols

- -Active attacker model
- Should be able to spot simple attacks like in Needham-Schroeder
- Diffie-Hellman key agreement – What's man-in-the-middle attack?
- Password authentication protocol
 - What's a dictionary attack?
 - Given a protocol, should be able to tell if it is vulnerable to dictionary attack
- Do not need to know how each protocol works in detail

12

11

Random Number Generation

- Two steps
 - TRNG (true random number generator)
 » What sources are good and what sources are bad?
 - PRNG (cryptographically secure pseudorandom number generator)
- Important for many security applications – Generating IV, keys, etc.

Secret Sharing

- Definition of (n,n) and (n,t) threshold scheme
- How do they work?
- · Should be able to solve problems like in hw
- Zero-knowledge proof

- Out of scope

14

13