
Project 1
CS161 Computer Security, Fall 2008

Assigned 10/01/08

Due 10/15/08

If you know the enemy and know yourself, you need not fear the result of a hundred battles. If

you know yourself but not the enemy, for every victory gained you will also suffer a defeat. If you

know neither the enemy nor yourself, you will succumb in every battle. - Sun Tzu

In this project, you will play the attacker’s role. We will give you a program that is vulnerable,
and you will create the exploit for it!

1 Problem Statement

Your goal is to create an exploit for a buffer overflow vulnerability. To get started, read over Aleph
One’s “Smashing the Stack for Fun and Profit”.1 (You don’t have to read the section “Shell Code”,
since we provide you with shellcode, though you may find it interesting.)

The vulnerable program is /home/ff/cs161/proj1-fa08/targets/target on the instructional
machines. Copy the directory /home/ff/cs161/proj1-fa08/exploits to your working space; it
contains skeleton code and a Makefile for your exploit program. The source code for the vulnerable
program, /home/ff/cs161/proj1-fa08/targets/target.c, is also provided for your reference.

Your task is to edit exploit.c so that it exploits the buffer overflow vulnerability in target to
run a shell. We provide exploit code in shellcode.h; you just have to cause it to be executed in
target. If you are successful, you should see a ‘$’ shell prompt:

bash-3.1$ ./exploit

$

The only file you should edit is exploit.c. Build it with gmake. The path to target is hard-coded
in exploit.c; please do not change it.

Because buffer overflow exploits are highly machine-dependent, you are restricted to working on
sphere.cs, rhombus.cs, or pentagon.cs. Your exploit must work on one of those machines (they
are Solaris x86 boxes).

To start with, we recommend that you use gdb to explore the stack and memory layout of
target. It will be different when called via execve(), so here is the best way to get set up (after
running gdb ./exploit):

(gdb) run

Starting program: ./exploit

1http://reactor-core.org/stack-smashing.html



Program received signal SIGTRAP, Trace/breakpoint trap.

0xce7cb7b6 in ?? ()

(gdb) symbol-file /home/ff/cs161/proj1-fa08/targets/target

Load new symbol table from "/home/ff/cs161/proj1-fa08/targets/target"? (y or n) y

Reading symbols from /home/ff/cs161/proj1-fa08/targets/target...done.

warning: rw_common (): unable to read at addr 0xce7a2060

warning: sol_thread_new_objfile: td_ta_new: Debugger service failed

(gdb) break main

Breakpoint 1 at 0x8050834: file target.c, line 21.

(gdb) continue

Continuing.

Breakpoint 1, main (argc=2, argv=0x8047f14) at target.c:21

21 if (argc != 2)

(gdb)

Running it this way makes it difficult to restart, however, so you may want to just run gdb target

to explore initially and then switch to the execve() version when it’s time to find the actual ad-
dresses for your exploit.

You will want to become familiar with the following gdb commands (use the ’help’ command):
break, where, disassemble, next, nexti, x, and info. Be sure to explore the display options for
the x command.

You should not follow Aleph One’s directions too closely. You may or may not want to execute
the shellcode on the stack, and you can use gdb to figure out the exact address to jump to, so you
don’t have to use anything like get_sp() or NOP padding.

You must submit your code electronically. Go to the directory where exploit.c resides and
type submit proj1. You should only submit exploit.c; you should not change the other files.

2 Grading

1. (1 point) You must ensure that your code runs on one of the three servers listed above. Please
tell us which server you ran your code on (sphere, rhombus, or pentagon), as comment
(/* Server : rhombus.cs/sphere.cs ... */) in the beginning of your submission file
exploit.c. The grader will check out your submitted exploit.c and compile it. The grader
will type gmake and then ./exploit to run your exploit. Please also list names of your project
group members as a comment in the beginning of the file exploit.c.

2. (7 points) When the exploit is executed by the grader, it must exploit the target, giving the
grader a remote shell. Do not change the hard coded path for target in your solution.

3. (1 point) List the name of the function containing the vulnerable buffer. Draw the stack
layout showing the absolute locations of the variables you had to be concerned about to make
your exploit work.

4. (1 point) You should include in your homework writeup a brief description of how you arrived
at your solution, including how you determined which address to jump to. The writeup for
this question should be at most 4 sentences.


