CS 162 Section 2 9/17-9/18

True/False

1.

2.

3.

U

Preemptive multithreading requires threads to give up the CPU using
the yield() system call.

Despite the overhead of context switching, multithreading can provide
speed-up even on a single-core CPU.

In some cases, two threads can both be executing a specific critical
section at the same time.

Synchronization is achieved with strictly software-level support.
Every interrupt results in a transition from user to kernel mode. Hint:
think Inception.

Short Answer

1.

With spinlocks, threads spin in a loop (busy waiting) until the lock is
freed. In general, spinlocks are a bad idea because they can waste a lot
of processor cycles. The alternative is to put a waiting process to sleep
while it is waiting for the lock (using a blocking lock). However, there
are certain cases where a spinlock is more efficient than a blocking
lock. Give a circumstance in which this is true and explain why a
spinlock is more efficient.

Give two reasons why this is a bad implementation for a lock:

lock.acquire() { disable interrupts; }
lock.release() { enable interrupts; }

What are some of the similarities and differences between interrupts
and system calls?



Locks

Are these two implementations of spinlocks correct? If they aren’t, give a
scenario in which they wouldn’t work. Assume that the system only has two
threads. For #2, assume that this_thread and other_thread are ints
corresponding to the thread IDs (of the current thread and the thread that
isn’t running).

1.
struct lock {

int held = 0;
}

void acquire(lock) {
while (lock->held);
lock->held = 1;

}

void release(lock) {
lock->held = 0;

}
2.
struct lock {
int turn = 0;
}

void acquire(lock) {
while (lock->turn != this_thread);

}

void release(lock) {
lock->turn = other_thread

}



