S 162 Section 5: Address Translation & Caches and TLBs

True/False

1.

LRU caches are more complex than random caches.

True, random caches are easy to implement in hardware, LRU caches requires
storing information about access time.

The optimal page replacement strategy is to evict the page which will be accessed
least frequently on average.

False, it’s to evict that which will be accessed furthest in the future, as we said in
class. Can you think of how prove this to yourself?

Short Answer

1.

If a computer has a 32 bit address space, and 1K (i.e. 2*10 bytes) sized pages, how
many page table entries does it have? (fine to express answer base-2).

2732/2710 = 2722 = 272%2/720 = 4M = ~4Million

If you have a very large virtual address space, what are the benefits of using an
inverted page table? What are the drawbacks?

Benefit: Table’s size is directly proportional to the size of physical memory, as
opposed to the size of virtual memory, which is typically much larger than physical
memory.

Drawback: Requires maintaining a hash table in hardware, which is hard

Below is pseudocode for the clock page replacement algorithm (we are assuming
the clock is entirely “full” with pages, and a new page must be found). Fill in the
blank:

replaced = false;
while ('replaced) {
1. 1f (current page use bit==0)
{replace page, replaced=true}
else {use bit=0}
2. Advance clock hand



Long Answer
Caching: Assume a computer system employing a cache, where the access time to the main
memory is 100 ns, and the access time to the cache is 20ns.

1. Assume the cache hit rate is 95%. What is the average access time?

Average Access Time = Hit*cache_access_time + (1Hit)*memory_access_time
=0.95*20 ns + 0.05*100 ns = 24 ns

Alternatively, we accepted solutions that included the cache time in the memory
access time: AAT = 0.95* 20 ns + 0.05 * (20 ns + 100 ns) = 25 ns.

2. Assume the system implements virtual memory using a two-level page table with no
TLB, and assume the CPU loads a word X from main memory. Assume the cache hit
rate for the page entries as well as for the data in memory is 95%. What is the
average time it takes to load X?

The Average Memory Access Time for X (AMAT) requires three memory accesses,
two for each page entry, and one for reading X: 3*24 = 72 ns.

The alternate solution from (a) yields 3*25 = 75 ns. We only accepted the alternate
solution for (b) if you derived the same value for (a).

Longer Answer (From Fall 2012 Midterm)
Assume a system with a two level page table. The virtual memory address space is 32 bits
and the physical memory address space is 16 bits.

1. Make sure that each translation table fits in a page.
a. Whatis the optimal page size? 4KB
b. Specify the length of each field in the virtual address.

(bit 31) (bit 0)

Virtual P1 Index | Virtual P2 Index Offset
10 10 12

2. Assume you add to your system a 4 way set-associative data cache with 16 total
cache blocks. Each block in the cache holds 8 bytes of data. In order to address a
specific byte of data, you will have to split the address into the cache tag, cache
index and byte select. Assume there are no modifiers bits in the table.

(bit 31) (bit 0)

tag index byte select
16-3-2 =11 16 blocks/4 (2"2) = 2| 8 bytes (2/3) =3




