CS 162 Section 9

True/False:

1. Serial schedules are necessary to preserve ACID transaction semantics
False. The schedule just needs to be semantically equivalent to a serial schedule

Short Answer:
1. What does ACID stand for? Explain each of them.

Atomicity: all actions in the transaction happen, or none happen
Consistency: if each transaction is consistent, and the database starts consistent, it
ends up consistent, e.g.,
— Balance cannot be negative
— Cannot reschedule meeting on February 30
Isolation: execution of one transaction is isolated from that of all others
Durability: if a transaction commits, its effects persist

2. What are some elements you might want to lock in a database?
Row, Table, Database, Page, Predicates (In theory, never done in practice), Ranges
3. What are types of possible conflicts in an execution of multiple transactions?
Read-Write conflict (Unrepeatable reads)
Write-read conflict (reading uncommitted data)
Write-write conflict (overwriting uncommitted data)
4. What are the requirements for two transaction operations to conflict?
Belong to different transactions
Are on the same data
At least one of them is a write

5. Two schedules are conflict equivalent iff:

Involve the same operations of the same transactions
Every pair of conflicting operations is ordered the same way

Long Answer:
1. Consider the following two transactions and schedule (time goes from left to right). Is this
schedule conflict-serializable? Explain why or why not.

T1: R1[A] W1[A] R1[B] W1[B]
T2: R2[A] R2[B]

The schedule is not conflict serializable because the precedence graph contains a cycle.
The graph has an edge T1 — T2 because the schedule contains W1[A] — R2[A]. The
graph has an edge T2 — T1 because the schedule contains R2[B] — W1[B].

W1[A] = R2[A]

11 T2

R2[B] © W1[B]

2. Consider a database with objects X and Y and assume that there are two transactions T1
and T2. T1 first reads X and Y and then writes X and Y. T2 reads and writes X then reads
and writes Y. Give an example schedule that is not serializable. Explain why your schedule
is not serializable.

T1: R1X] R1[Y] WAX] WALY]
T2: R2[X] W2[X] R2[Y] W2[Y]

A schedule is serializable if it contains the same transactions and operations as a serial
schedule and the order of all conflicting operations (read/writes to the same objects by
different transactions) is also the same. In the above schedule, T1 reads X before T2
writes X. However, T1 writes X after T2 reads and writes it. The schedule is thus clearly
not serializable.

Additionally, according to the above schedule, the final content of object X is written by
T1 and the final content of object Y is written by T2. Such a result is not possible in any
serial execution, where transactions execute one after the other in sequence.

