
CS162  
Operating Systems and 
Systems Programming 

 
 

Final Exam Review"

May 4, 2012!
Mosharaf Chowdhury and Karthik Reddy!

http://inst.eecs.berkeley.edu/~cs162!

Final Exam Review.2!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Final Exam"
•  Friday May 11 11:30-2:30 PM in 230 Hearst Gym!

•  Two double-sided handwritten pages of notes!

•  Closed book!

•  Comprehensive!
– All lectures, discussions, projects, readings, handouts, !

Final Exam Review.3!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Topics"
•  Synchronization!

– Primitives, Deadlock!

•  Memory management!
– Address translation, Caches, TLBs, Demand Paging!

•  Distributed Systems!
– Naming, Security, Networking!

•  Filesystems!
– Disks, Directories!

•  Transactions!

Final Exam Review.4!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Synchronization Primitives"

Final Exam Review.5!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Definitions"
•  Synchronization: using atomic operations to ensure

cooperation between threads!
!
•  Mutual Exclusion: ensuring that only one thread does a

particular thing at a time!
– One thread excludes the other while doing its task!

•  Critical Section: piece of code that only one thread can
execute at once!

– Critical section is the result of mutual exclusion!
– Critical section and mutual exclusion are two ways of

describing the same thing!

Final Exam Review.6!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Semaphores"
•  Semaphores are a kind of generalized lock!

– First defined by Dijkstra in late 60s!
– Main synchronization primitive used in original UNIX!

•  Definition: a Semaphore has a non-negative integer value
and supports the following two operations:!

– P(): an atomic operation that waits for semaphore to become
positive, then decrements it by 1 !

»  Think of this as the wait() operation!
– V(): an atomic operation that increments the semaphore by 1,

waking up a waiting P, if any!
»  This of this as the signal() operation!

– Note that P() stands for “proberen” (to test) and V() stands for
“verhogen” (to increment) in Dutch!

Final Exam Review.7!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Condition Variables"

•  Condition Variable: a queue of threads waiting for something
inside a critical section!

– Key idea: allow sleeping inside critical section by atomically
releasing lock at time we go to sleep!

– Contrast to semaphores: Canʼt wait inside critical section!

•  Operations:!
– Wait(&lock): Atomically release lock and go to sleep. Re-

acquire lock later, before returning. !
– Signal(): Wake up one waiter, if any!
– Broadcast(): Wake up all waiters!

•  Rule: Must hold lock when doing condition variable ops!!
!

Final Exam Review.8!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Mesa vs. Hoare monitors"
•  Hoare-style (most textbooks):!

– Signaler gives lock, CPU to waiter; waiter runs
immediately!

– Waiter gives up lock, processor back to signaler when it
exits critical section or if it waits again!

•  Mesa-style (most real operating systems):!
– Signaler keeps lock and processor!
– Waiter placed on ready queue with no special priority!
– Practically, need to check condition again after wait!

Final Exam Review.9!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Deadlock"

Final Exam Review.10!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Four requirements for Deadlock"

•  Mutual exclusion!
– Only one thread at a time can use a resource.!

•  Hold and wait!
– Thread holding at least one resource is waiting to acquire

additional resources held by other threads!
•  No preemption!

– Resources are released only voluntarily by the thread holding
the resource, after thread is finished with it!

•  Circular wait!
– There exists a set {T1, …, Tn} of waiting threads!

»  T1 is waiting for a resource that is held by T2!
»  T2 is waiting for a resource that is held by T3!
» …!
»  Tn is waiting for a resource that is held by T1!

Final Exam Review.11!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Bankerʼs Algorithm for Preventing
Deadlock"

•  Allocate resources dynamically!
– Evaluate each request and grant if some  

ordering of threads is still deadlock free afterward !
– Technique: pretend each request is granted, then run

deadlock detection algorithm, substituting  
 ([Maxnode]-[Allocnode] ≤ [Avail]) for ([Requestnode] ≤ [Avail]) 
Grant request if result is deadlock free (conservative!)!

– Keeps system in a “SAFE” state, i.e. there exists a
sequence {T1, T2, … Tn} with T1 requesting all remaining
resources, finishing, then T2 requesting all remaining
resources, etc..!

•  Algorithm allows the sum of maximum  
resource needs of all current threads to be  
greater than total resources!

Final Exam Review.12!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Memory Multiplexing,  
Address Translation"

Final Exam Review.13!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Important Aspects of Memory Multiplexing"
•  Controlled overlap:!

– Processes should not collide in physical memory!
– Conversely, would like the ability to share memory when desired

(for communication)!
•  Protection:!

– Prevent access to private memory of other processes!
» Different pages of memory can be given special behavior (Read

Only, Invisible to user programs, etc).!
»  Kernel data protected from User programs!
»  Programs protected from themselves!

•  Translation: !
– Ability to translate accesses from one address space (virtual) to

a different one (physical)!
– When translation exists, processor uses virtual addresses,

physical memory uses physical addresses!
– Side effects:!

» Can be used to avoid overlap!
» Can be used to give uniform view of memory to programs!

Final Exam Review.14!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Why Address Translation?"

Prog 1"
Virtual"

Address"
Space 1"

Prog 2"
Virtual"

Address"
Space 2"

Code"
Data"
Heap"
Stack"

Code"
Data"
Heap"
Stack"

Data 2"

Stack 1"

Heap 1"

OS heap & "
Stacks"

Code 1"

Stack 2"

Data 1"

Heap 2"

Code 2"

OS code"

OS data"Translation Map 1" Translation Map 2"

Physical Address Space"

Final Exam Review.15!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Dual-Mode Operation"
•  Can an application modify its own translation maps?!

–  If it could, could get access to all of physical memory!
– Has to be restricted somehow!

•  To assist with protection, hardware provides at least two
modes (Dual-Mode Operation):!

–  “Kernel” mode (or “supervisor” or “protected”)!
–  “User” mode (Normal program mode)!
– Mode set with bits in special control register only accessible

in kernel-mode!
– User→Kernel: System calls, Traps, or Interrupts!

Final Exam Review.16!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Addr. Translation: Segmentation vs. Paging"

Base0" Limit0" V"
Base1" Limit1" V"
Base2" Limit2" V"
Base3" Limit3" N"
Base4" Limit4" V"
Base5" Limit5" N"
Base6" Limit6" N"
Base7" Limit7" V"

Offset"Seg #"Virtual"
Address"

Base2" Limit2" V"

+" Physical"
Address"

>" Error"

Physical Address"
Offset"

Offset"Virtual"
Page #"Virtual Address:"

PageTablePtr" page #0"

page #2"
page #3"
page #4"
page #5"

V,R"
page #1" V,R"

V,R,W"
V,R,W"
N"
V,R,W"

page #1" V,R"

Check Perm"

Access"
Error"

Physical"
Page #"

Final Exam Review.17!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Review: Address Segmentation "

1111 1111" stack!

heap!

code!

data!

Virtual memory view" Physical memory view"

data!

heap!

stack!

0000 0000"
0001 0000"

0101 0000"

0111 0000"

1110 000"

0000 0000"

0100 0000"

1000 0000"

1100 0000"

1111 0000"

Seg #" base" limit"
00" 0001 0000" 10 0000"
01" 0101 0000" 10 0000"
10" 0111 0000" 1 1000"
11" 1011 0000" 1 0000"

seg #! offset"

code!

Final Exam Review.18!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Review: Address Segmentation "

1111 1111"
stack!

heap!

code!

data!

Virtual memory view" Physical memory view"

data!

heap!

stack!

0000 0000"

0100 0000"

1000 0000"

1100 0000"

seg #! offset"

code!

What happens if
stack grows to
1110 0000?!

1110 0000"

0000 0000"
0001 0000"

0101 0000"

0111 0000"

1110 000"
Seg #" base" limit"
00" 0001 0000" 10 0000"
01" 0101 0000" 10 0000"
10" 0111 0000" 1 1000"
11" 1011 0000" 1 0000"

Final Exam Review.19!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Review: Address Segmentation "

1111 1111"
stack!

heap!

code!

data!

Virtual memory view" Physical memory view"

data!

heap!

stack!

0000 0000"

0100 0000"

1000 0000"

1100 0000"

1110 0000"

seg #! offset"

code!

No room to grow!!
Buffer overflow error!

0000 0000"
0001 0000"

0101 0000"

0111 0000"

1110 000"
Seg #" base" limit"
00" 0001 0000" 10 0000"
01" 0101 0000" 10 0000"
10" 0111 0000" 1 1000"
11" 1011 0000" 1 0000"

Final Exam Review.20!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Review: Page Tables"

1111 1111" stack!

heap!

code!

data!

Virtual memory view"

0000 0000"

0100 0000"

1000 0000"

1100 0000"

1111 0000"

page #!offset"

Physical memory view"

data!

code!

PT!

heap!

stack!

0000 0000"
0001 0000"

0101 000"

0111 000"

1110 0000"

11111 11101"
11110 11100"
11101 null "
11100 null "
11011 null"
11010 null"
11001 null"
11000 null"
10111 null"
10110 null"
10101 null"
10100 null"
10011 null"
10010 10000"
10001 01111"
10000 01110"
01111 null"
01110 null "
01101 null"
01100 null"
01011 01101 "
01010 01100 "
01001 01011"
01000 01010"
00111 null"
00110 null"
00101 null "
00100 null "
00011 00101"
00010 00100"
00001 00011"
00000 00010"

Page Table"

Final Exam Review.21!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Review: Page Tables"

1111 1111"
stack!

heap!

code!

data!

Virtual memory view"

0000 0000"

0100 0000"

1000 0000"

1100 0000"

page #!offset"

Physical memory view"

data!

code!

PT!

heap!

stack!

0000 0000"
0001 0000"

0101 000"

0111 000"

1110 0000"

11111 11101"
11110 11100"
11101 null "
11100 null "
11011 null"
11010 null"
11001 null"
11000 null"
10111 null"
10110 null"
10101 null"
10100 null"
10011 null"
10010 10000"
10001 01111"
10000 01110"
01111 null"
01110 null "
01101 null"
01100 null"
01011 01101 "
01010 01100 "
01001 01011"
01000 01010"
00111 null"
00110 null"
00101 null "
00100 null "
00011 00101"
00010 00100"
00001 00011"
00000 00010"

Page Table"

1110 0000"

What happens if
stack grows to
1110 0000?!

Final Exam Review.22!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

stack!

Review: Page Tables"

1111 1111"
stack!

heap!

code!

data!

Virtual memory view"

0000 0000"

0100 0000"

1000 0000"

1100 0000"

page #!offset"

Physical memory view"

data!

code!

PT!

heap!

stack!

11111 11101"
11110 11100"
11101 10111"
11100 10110"
11011 null"
11010 null"
11001 null"
11000 null"
10111 null"
10110 null"
10101 null"
10100 null"
10011 null"
10010 10000"
10001 01111"
10000 01110"
01111 null"
01110 null"
01101 null"
01100 null"
01011 01101 "
01010 01100 "
01001 01011"
01000 01010"
00111 null"
00110 null"
00101 null "
00100 null "
00011 00101"
00010 00100"
00001 00011"
00000 00010"

Page Table"

0000 0000"
0001 0000"

0101 000"

0111 000"

1110 0000"

Allocate new
pages where
room!!

Challenge: Table size equal to the # of
pages in virtual memory!!

1110 0000"

Final Exam Review.23!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

stack!

Review: Two-Level Page Tables"
1111 1111"

stack!

heap!

code!

data!

Virtual memory view"

0000 0000"

0100 0000"

1000 0000"

1100 0000"

page1 #! offset"

Physical memory view"

data!

code!

PT2!

PT1!

heap!

stack!

0000 0000"
0001 0000"

0101 000"

0111 000"

1110 0000"

page2 #!

111 "
110 null"
101 null"
100 "
011 null"
010 "
001 null"
000 "

11 11101 "
10 11100"
01 10111"
00 10110"

11 01101 "
10 01100"
01 01011"
00 01010"

11 00101 "
10 00100"
01 00011"
00 00010"

11 null "
10 10000"
01 01111"
00 01110"

Page Tables"
(level 2)"

Page Table"
(level 1)"

1110 0000"

Final Exam Review.24!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

stack!

Review: Two-Level Page Tables"

stack!

heap!

code!

data!

Virtual memory view"

1001 0000"

Physical memory view"

data!

code!

PT2!

PT1!

heap!

stack!

0000 0000"
0001 0000"

1000 0000"

1110 0000"

111 "
110 null"
101 null"
100 "
011 null"
010 "
001 null"
000 "

11 11101 "
10 11100"
01 10111"
00 10110"

11 01101 "
10 01100"
01 01011"
00 01010"

11 00101 "
10 00100"
01 00011"
00 00010"

11 null "
10 10000"
01 01111"
00 01110"

Page Tables"
(level 2)"

Page Table"
(level 1)"

In best case, total size of page tables ≈
number of pages used by program. But
requires one additional memory access!!

Final Exam Review.25!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

1111 1111"
stack!

heap!

code!

data!

Virtual memory view"

0000 0000"

0100 0000"

1000 0000"

1100 0000"

1110 0000"

seg #! offset"

Seg
#"

base" limit"

00" 0000 0000" 4"
01" 0000 1000" 4"
10" 1110 2000" 3"
11" 1110 3000" 4"

stack!

Physical memory "
view"

data!

code!

PT 2!

PT 2!

heap!

stack!

0000 0000"
0001 0000"

0101 000"

0111 000"

1110 0000"
11 11101 "
10 11100"
01 10111"
00 10110"

11 01101 "
10 01100"
01 01011"
00 01010"

11 00101 "
10 00100"
01 00011"
00 00010"

11 null "
10 10000"
01 01111"
00 01110"

Page Tables"
(level 2)"

Review: Segmentation & Page Tables"

Final Exam Review.26!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

1111 1111"
stack!

heap!

code!

data!

Virtual memory view"

0000 0000"

0100 0000"

1000 0000"

1100 0000"

1110 0000"

seg #! offset"

Seg
#"

base" limit"

00" 0000 0000" 4"
01" 0000 1000" 4"
10" 1110 2000" 3"
11" 1110 3000" 4"

stack!

Physical memory "
view"

data!

code!

PT 2!

PT 2!

heap!

stack!

0000 0000"
0001 0000"

0101 000"

0111 000"

1110 0000"
11 11101 "
10 11100"
01 10111"
00 10110"

11 01101 "
10 01100"
01 01011"
00 01010"

11 00101 "
10 00100"
01 00011"
00 00010"

11 null "
10 10000"
01 01111"
00 01110"

Page Tables"
(level 2)"

Review: Segmentation & Page Tables"

1001 0000"
1000 0000"

Final Exam Review.27!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

stack!

Review: Inverted Page Table"
1111 1111"

stack!

heap!

code!

data!

Virtual memory view"

0000 0000"

0100 0000"

1000 0000"

1100 0000"

page #!offset"

Physical memory view"

data!

code!

IPT!

heap!

stack!

11111 11101"
11110 11100"
11101 10111"
11100  10110"
10010 10000"
10001 01111"
10000  01110"
01011 01101 "
01010 01100 "
01001 01011"
1000  0 01010 "
00011 00101"
00010 00100"
00001 00011"
00000 00010"

Inverted Table"
hash(virt. page #) = "

physical page #"

0000 0000"
0001 0000"

0101 000"

0111 000"

1110 0000"1110 0000"

Total size of page table ≈ number of pages
used by program. But hash more complex.!

Final Exam Review.28!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Address Translation Comparison"
Advantages" Disadvantages"

Segmentation! Fast context
switching: Segment
mapping maintained
by CPU !

External fragmentation!

Page Tables
(single-level
page)!

No external
fragmentation!

• Large size: Table size
~ virtual memory!
• Internal fragmentation!

Page Tables&
Segmentation!

• No external
fragmentation!
• Table size ~ memory
used by program!

• Multiple memory
references per page
access !
• Internal fragmentation!

Two-level
page tables!
Inverted Table! Hash function more

complex!

Final Exam Review.29!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Caches, TLBs"

Final Exam Review.30!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

•  Compulsory (cold start): first reference to a block!
–  “Cold” fact of life: not a whole lot you can do about it!
– Note: When running “billions” of instruction, Compulsory Misses

are insignificant!
•  Capacity:!

– Cache cannot contain all blocks access by the program!
– Solution: increase cache size!

•  Conflict (collision):!
– Multiple memory locations mapped to same cache location!
– Solutions: increase cache size, or increase associativity!

•  Two others:!
– Coherence (Invalidation): other process (e.g., I/O) updates

memory !
– Policy: Due to non-optimal replacement policy!

Review: Sources of Cache Misses"

Final Exam Review.31!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Direct Mapped Cache"
•  Cache index selects a cache block!
•  “Byte select” selects byte within cache block!

– Example: Block Size=32B blocks!
•  Cache tag fully identifies the cached data!
•  Data with same “cache index” shares the same cache entry!

– Conflict misses!

:

 Cache Data
Byte 0 Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

Valid Bit

: :

 Cache Tag
Ex: 0x01

Cache Index
0 4 31

Cache Tag Byte Select
8

Compare
Hit

Final Exam Review.32!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Cache Index
0 4 31

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Mux 0 1 Sel1 Sel0

OR

Hit

Set Associative Cache"
•  N-way set associative: N entries per Cache Index!

– N direct mapped caches operates in parallel!
•  Example: Two-way set associative cache!

– Two tags in the set are compared to input in parallel!
– Data is selected based on the tag result!

Compare Compare

Cache Block

Final Exam Review.33!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Fully Associative Cache"
•  Fully Associative: Every block can hold any line!

– Address does not include a cache index!
– Compare Cache Tags of all Cache Entries in Parallel!

•  Example: Block Size=32B blocks!
– We need N 27-bit comparators!
– Still have byte select to choose from within block!

:

 Cache Data
Byte 0 Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

Valid Bit

: :

 Cache Tag

0 4
Cache Tag (27 bits long) Byte Select

31

=

=
=

=

=

Ex: 0x01

Final Exam Review.34!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

• Example: Block 12 placed in 8 block cache!

0 1 2 3 4 5 6 7 Block
no.

Direct mapped:
block 12 (01100)
can go only into
block 4 (12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 4 5 6 7 Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7 Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 Block
no.

Where does a Block Get Placed in a
Cache?"

01" 100"

tag" index"

011" 00"

tag" index"

01100"

tag"

Final Exam Review.35!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Review: Caching Applied to Address Translation"
•  Problem: address translation expensive (especially multi-level)!
•  Solution: cache address translation (TLB)!

–  Instruction accesses spend a lot of time on the same page (since
accesses sequential)!

– Stack accesses have definite locality of reference!
– Data accesses have less page locality, but still some…!

Data Read or Write"
(untranslated)"

CPU" Physical"
Memory"

TLB"

Translate"
(MMU)"

No"

Virtual"
Address" Physical"

Address"Yes"
Cached?"

Final Exam Review.36!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

TLB organization"
• How big does TLB actually have to be?!

– Usually small: 128-512 entries!
– Not very big, can support higher associativity!

• TLB usually organized as fully-associative cache!
– Lookup is by Virtual Address!
– Returns Physical Address!
!

• What happens when fully-associative is too slow?!
– Put a small (4-16 entry) direct-mapped cache in front!
– Called a “TLB Slice”!

• When does TLB lookup occur?!
– Before cache lookup?!
– In parallel with cache lookup?!

Final Exam Review.37!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

•  As described, TLB lookup is in serial with cache lookup:!

•  Machines with TLBs go one step further: they overlap TLB
lookup with cache access.!

– Works because offset available early!

Reducing translation time further"

Virtual Address

TLB Lookup

V Access
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address

Final Exam Review.38!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

•  Here is how this might work with a 4K cache: !

•  What if cache size is increased to 8KB?!
– Overlap not complete!
– Need to do something else. See CS152/252 !

•  Another option: Virtual Caches!
– Tags in cache are virtual addresses!
– Translation only happens on cache misses!

TLB" 4K Cache"

10" 2"
00"

4 bytes"

index" 1 K"

page #" disp"
20"

assoc"
lookup"

32"

Hit/"
Miss"

PA" Data" Hit/"
Miss"

="PA"

Overlapping TLB & Cache Access"

Final Exam Review.39!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Putting Everything Together"

Final Exam Review.40!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Page Tables & Address Translation"

Physical Address:!
Offset!Physical!

Page #!

Virtual Address:!
Offset!Virtual!

P2 index!
Virtual!
P1 index!

PageTablePtr!

Page Table !
(1st level)!

Page Table !
(2nd level)!

Physical !
Memory:!

Final Exam Review.41!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Page Table !
(2nd level)!

PageTablePtr!

Page Table !
(1st level)!

Translation Look-aside Buffer"

Offset!Physical!
Page #!

Virtual Address:!
Offset!Virtual!

P2 index!
Virtual!
P1 index!

Physical !
Memory:!

Physical Address:!

…!

TLB:!

Final Exam Review.42!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Page Table !
(2nd level)!

PageTablePtr!

Page Table !
(1st level)!

Virtual Address:!
Offset!Virtual!

P2 index!
Virtual!
P1 index!

…!

TLB:!

Caching"

Offset!

Physical !
Memory:!

Physical Address:!
Physical!
Page #!

…

tag:! block:!
cache:!

index! byte!tag!

Final Exam Review.43!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Demand Paging"

Final Exam Review.44!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Demand Paging"
•  Modern programs require a lot of physical memory!

– Memory per system growing faster than 25%-30%/year!
•  But they donʼt use all their memory all of the time!

– 90-10 rule: programs spend 90% of their time in 10% of their
code!

– Wasteful to require all of userʼs code to be in memory!
•  Solution: use main memory as cache for disk!

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

Tertiary
Storage
(Tape)

Caching"

Final Exam Review.45!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

•  PTE helps us implement demand paging!
– Valid ⇒ Page in memory, PTE points at physical page!
– Not Valid ⇒ Page not in memory; use info in PTE to find it on

disk when necessary!
•  Suppose user references page with invalid PTE?!

– Memory Management Unit (MMU) traps to OS!
» Resulting trap is a “Page Fault”!

– What does OS do on a Page Fault?:!
» Choose an old page to replace !
»  If old page modified (“D=1”), write contents back to disk!
» Change its PTE and any cached TLB to be invalid!
»  Load new page into memory from disk!
» Update page table entry, invalidate TLB for new entry!
» Continue thread from original faulting location!

– TLB for new page will be loaded when thread continued!!
– While pulling pages off disk for one process, OS runs another

process from ready queue!
»  Suspended process sits on wait queue!

Demand Paging Mechanisms"

Final Exam Review.46!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Steps in Handling a Page Fault"

Final Exam Review.47!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Page Replacement Policies"
•  FIFO (First In, First Out)!

– Throw out oldest page. Be fair – let every page live in memory
for same amount of time.!

– Bad, because throws out heavily used pages instead of
infrequently used pages!

•  MIN (Minimum): !
– Replace page that wonʼt be used for the longest time !
– Great, but canʼt really know future…!
– Makes good comparison case, however!

•  LRU (Least Recently Used):!
– Replace page that hasnʼt been used for the longest time!
– Programs have locality, so if something not used for a while,

unlikely to be used in the near future.!
– Seems like LRU should be a good approximation to MIN.!

Final Exam Review.48!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

•  Suppose we have 3 page frames, 4 virtual pages, and
following reference stream: !

– A B C A B D A D B C B!
•  Consider FIFO Page replacement:!

– FIFO: 7 faults. !
– When referencing D, replacing A is bad choice, since need A

again right away!

Example: FIFO"

C"

B"

A"

D"

C"

B"

A"

B"C"B"D"A"D"B"A"C"B"A"

3"

2"

1"

Ref:"
Page:"

Final Exam Review.49!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

•  Suppose we have the same reference stream: !
– A B C A B D A D B C B!

•  Consider MIN Page replacement:!

– MIN: 5 faults !
– Look for page not referenced farthest in future.!

•  What will LRU do?!
– Same decisions as MIN here, but wonʼt always be true!!

Example: MIN"

C"

D"C"

B"

A"

B"C"B"D"A"D"B"A"C"B"A"

3"

2"

1"

Ref:"
Page:"

Final Exam Review.50!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

•  Consider the following: A B C D A B C D A B C D!
•  LRU Performs as follows (same as FIFO here):!

– Every reference is a page fault!!
•  MIN Does much better:!

D"

When will LRU perform badly?"

C"

B"

A"

D"

C"

B"

A"

D"

C"

B"

A"

C"B"A"D"C"B"A"D"C"B"A" D"

3"

2"

1"

Ref:"
Page:"

B"

C"

D"C"

B"

A"

C"B"A"D"C"B"A"D"C"B"A" D"

3"

2"

1"

Ref:"
Page:"

Final Exam Review.51!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Adding Memory Doesnʼt Always Help Fault Rate"
•  Does adding memory reduce number of page faults?!

– Yes for LRU and MIN!
– Not necessarily for FIFO! (Beladyʼs anomaly)!

•  After adding memory:!
– With FIFO, contents can be completely different!
–  In contrast, with LRU or MIN, contents of memory with X pages

are a subset of contents with X+1 Page!

D"
C"

E"

B"
A"

D"

C"
B"

A"

D"C"B"A
"

E"B"A"D"C"B"A" E"

3"
2"
1"

Page:"

C"D"4"

E"
D"

B"
A"

E"

C"
B"

A"

D"C"B"A"E"B"A"D"C"B"A" E"

3"
2"
1"

Page:"

Final Exam Review.52!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Implementing LRU & Second Chance"
•  Perfect:!

– Timestamp page on each reference!
– Keep list of pages ordered by time of reference!
– Too expensive to implement in reality for many reasons!

•  Second Chance Algorithm: !
– Approximate LRU!

» Replace an old page, not the oldest page!
– FIFO with “use” (reference) bit!

•  Details!
– A “use” bit per physical page!
– On page fault check page at head of queue!

»  If use bit=1 à clear bit, and move page at tail (give the page
second chance!)!

»  If use bit=0 à replace page !
– Moving pages to tail still complex !

Final Exam Review.53!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Clock Algorithm"
•  Clock Algorithm: more efficient implementation of second

chance algorithm!
– Arrange physical pages in circle with single clock hand!

•  Details:!
– On page fault:!

»  Advance clock hand (not real time)!
» Check use bit: 1→used recently; clear and leave it alone  

 0→selected candidate for replacement!
– Will always find a page or loop forever?!

•  What if hand moving slowly?!
– Good sign or bad sign?!

» Not many page faults and/or find page quickly!
•  What if hand is moving quickly?!

– Lots of page faults and/or lots of reference bits set!

Final Exam Review.54!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
!

B	 u:0	

first	 loaded	
page	

A	 u:1	 D	 u:0	 C	 u:0	

last	 loaded	
page	

Final Exam Review.55!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!

B	 u:0	

first	 loaded	
page	

A	 u:1	 D	 u:0	 C	 u:0	

last	 loaded	
page	

Final Exam Review.56!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!

A	 u:1	

first	 loaded	
page	

D	 u:0	 C	 u:0	 F	 u:0	

last	 loaded	
page	

Final Exam Review.57!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
– Access page D!
– Page E arrives!

A	 u:1	

first	 loaded	
page	

D	 u:1	 C	 u:0	 F	 u:0	

last	 loaded	
page	

Final Exam Review.58!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
– Access page D!
– Page E arrives!

D	 u:1	

first	 loaded	
page	

C	 u:0	 F	 u:0	 A	 u:0	

last	 loaded	
page	

Final Exam Review.59!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
– Access page D!
– Page E arrives!

C	 u:0	

first	 loaded	
page	

F	 u:0	 A	 u:0	 D	 u:0	

last	 loaded	
page	

E	 u:0	

Final Exam Review.60!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!

B	 u:
0	

Final Exam Review.61!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A! B	 u:

0	
A	 u:
0	

Final Exam Review.62!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!

B	 u:
0	

A	 u:
1	

D	 u:
0	

Final Exam Review.63!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!

B	 u:
0	

A	 u:
1	

D	 u:
0	

C	 u:
0	

Final Exam Review.64!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

B	 u:
0	

Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!

F	 u:0	

A	 u:
1	

D	 u:
0	

C	 u:
0	

Final Exam Review.65!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

C	 u:
0	
E	 u:
0	

•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
– Access page D!
– Page E arrives!

A	 u:
1	
A	 u:
0	

D	 u:
1	
D	 u:
0	

Clock Replacement Illustration"

F	 u:0	

Final Exam Review.66!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Nth Chance version of Clock Algorithm"
•  Nth chance algorithm: Give page N chances!

– OS keeps counter per page: # sweeps!
– On page fault, OS checks use bit:!

»  1⇒clear use and also clear counter (used in last sweep)!
»  0⇒increment counter; if count=N, replace page!

– Means that clock hand has to sweep by N times without page
being used before page is replaced!

•  How do we pick N?!
– Why pick large N? Better approx to LRU!

»  If N ~ 1K, really good approximation!
– Why pick small N? More efficient!

» Otherwise might have to look a long way to find free page!
•  What about dirty pages?!

– Takes extra overhead to replace a dirty page, so give dirty
pages an extra chance before replacing?!

– Common approach:!
» Clean pages, use N=1!
» Dirty pages, use N=2 (and write back to disk when N=1)!

Final Exam Review.67!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Thrashing"

•  If a process does not have “enough” pages, the page-fault
rate is very high. This leads to:!

–  low CPU utilization!
– operating system spends most of its time swapping to disk!

•  Thrashing ≡ a process is busy swapping pages in and out!
•  Questions:!

– How do we detect Thrashing?!
– What is best response to Thrashing?!

Final Exam Review.68!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

•  Program Memory Access
Patterns have temporal and
spatial locality

– Group of Pages accessed
along a given time slice
called the “Working Set”

– Working Set defines
minimum number of pages
needed for process to
behave well

•  Not enough memory for
Working Set⇒Thrashing

– Better to swap out process?

Locality In A Memory-Reference Pattern

Final Exam Review.69!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Working-Set Model"

•  Δ ≡ working-set window ≡ fixed number of page references !
– Example: 10,000 instructions!

•  WSi (working set of Process Pi) = total set of pages
referenced in the most recent Δ (varies in time)!

–  if Δ too small will not encompass entire locality!
–  if Δ too large will encompass several localities!
–  if Δ = ∞ ⇒ will encompass entire program!

•  D = Σ|WSi| ≡ total demand frames !
•  if D > memory ⇒ Thrashing!

– Policy: if D > memory, then suspend/swap out processes!
– This can improve overall system behavior by a lot!!

Final Exam Review.70!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

File Systems"

Final Exam Review.71!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Review: Magnetic Disk Characteristic"
•  Cylinder: all the tracks under the  

head at a given point on all surface!
•  Read/write data is a three-stage  

process:!
– Seek time: position the head/arm over the proper track (into

proper cylinder)!
– Rotational latency: wait for the desired sector 

to rotate under the read/write head!
– Transfer time: transfer a block of bits (sector) 

under the read-write head!
•  Disk Latency = Queuing Time + Controller time + 

!Seek Time + Rotation Time + Xfer Time!

•  Highest Bandwidth: !
–  transfer large group of blocks sequentially from one track!

Sector"
Track"

Cylinder"
Head"

Platter"

Software"
Queue"
(Device Driver)"

H
ardw

are"
C

ontroller"
 Media Time"
(Seek+Rot+Xfer)"

R
equest"

R
esult"

Final Exam Review.72!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Building a File System"
•  File System: OS layer that transforms block interface

of disks into Files, Directories, etc.!

•  File System Components!
– Disk Management: collecting disk blocks into files!
– Naming: Interface to find files by name, not by blocks!
– Protection: Layers to keep data secure!
– Reliability/Durability!

•  How do users access files?!
– Sequential Access: bytes read in order (most file accesses)!
– Random Access: read/write element out of middle of array!

•  Goals:!
– Maximize sequential performance!
– Easy random access to file!
– Easy management of file (growth, truncation, etc)!

Final Exam Review.73!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Multilevel Indexed Files (UNIX 4.1) "
•  Multilevel Indexed Files:  

 (from UNIX 4.1 BSD)!
– Key idea: efficient for small  

files, but still allow big files!

•  File hdr contains 13 pointers !
– Fixed size table, pointers not all equivalent!
– This header is called an “inode” in UNIX!

•  File Header format:!
– First 10 pointers are to data blocks!
– Ptr 11 points to “indirect block” containing 256 block ptrs!
– Pointer 12 points to “doubly indirect block” containing 256

indirect block ptrs for total of 64K blocks!
– Pointer 13 points to a triply indirect block (16M blocks)!

Final Exam Review.74!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Example of Multilevel Indexed Files"
•  Sample file in multilevel  

indexed format:!
– How many accesses for  

block #23? (assume file  
header accessed on open)?!

»  Two: One for indirect block,  
one for data!

– How about block #5?!
» One: One for data!

– Block #340?!
»  Three: double indirect block,  

indirect block, and data!
•  UNIX 4.1 Pros and cons!

– Pros: !Simple (more or less) 
!Files can easily expand (up to a point) 
!Small files particularly cheap and easy!

– Cons: !Lots of seeks 
!Very large files must read many indirect blocks (four 

 !I/Oʼs per block!)!
!

Final Exam Review.75!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

File Allocation for Cray-1 DEMOS"

•  DEMOS: File system structure similar to segmentation!
–  Idea: reduce disk seeks by !

»  using contiguous allocation in normal case!
»  but allow flexibility to have non-contiguous allocation!

– Cray-1 had 12ns cycle time, so CPU:disk speed ratio about the
same as today (a few million instructions per seek)!

•  Header: table of base & size (10 “block group” pointers)!
– Each block chunk is a contiguous group of disk blocks!
– Sequential reads within a block chunk can proceed at high speed

– similar to continuous allocation!
•  How do you find an available block group? !

– Use freelist bitmap to find block of 0ʼs. !

base!size!

file header!

1,3,2!
1,3,3!
1,3,4!
1,3,5!
1,3,6!
1,3,7!
1,3,8!
1,3,9!

disk group!

Basic Segmentation Structure: !
Each segment contiguous on disk!

Final Exam Review.76!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Large File Version of DEMOS"

•  What if need much bigger files?!
–  If need more than 10 groups, set flag in header: BIGFILE!

»  Each table entry now points to an indirect block group!
– Suppose 1000 blocks in a block group ⇒ 80GB max file!

»  Assuming 8KB blocks, 8byte entries⇒ 
(10 ptrs×1024 groups/ptr×1000 blocks/group)*8K =80GB!

•  Discussion of DEMOS scheme!
– Pros: !Fast sequential access, Free areas merge simply 

!Easy to find free block groups (when disk not full)!
– Cons: !Disk full ⇒ No long runs of blocks (fragmentation), 

 !so high overhead allocation/access ! !
– Full disk ⇒ worst of 4.1BSD (lots of seeks) with worst of

continuous allocation (lots of recompaction needed) !

file header!

base!size! 1,3,2!
1,3,3!
1,3,4!
1,3,5!
1,3,6!
1,3,7!
1,3,8!
1,3,9!

disk group!base!size!

indirect!
block group!

Final Exam Review.77!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Directory Structure"

•  Not really a hierarchy!!
– Many systems allow directory structure to be organized as an

acyclic graph or even a (potentially) cyclic graph!
– Hard Links: different names for the same file!

» Multiple directory entries point at the same file!
– Soft Links: “shortcut” pointers to other files!

»  Implemented by storing the logical name of actual file!
•  Name Resolution: The process of converting a logical name

into a physical resource (like a file)!
– Traverse succession of directories until reach target file!
– Global file system: May be spread across the network!

Final Exam Review.78!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Networking"

Final Exam Review.79!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

How Does a Client  
Communicate with Servers?"

•  A: Via transport protocol (e.g., UDP, TCP, …)!

•  Transport protocol in a nutshell:!
– Allow two application end-points to communicate

»  Each application identified by a port number on the machine it runs
– Multiplexes/demultiplexes packets from/to different processes

using port numbers
– Can provide reliability, flow control, congestion control

•  Two main transport protocols in the Internet
– User datagram protocol (UDP): just provide multiplexing/

demultiplexing, no reliability
– Transport Control Protocol (TCP): provide reliability, flow

control, congestion control

Final Exam Review.80!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Internet

Transport Layer"
•  DNS server runs at a specific port number, i.e., 53

– Most popular DNS server: BIND (Berkeley Internet
Name Domain)

– Assume client (browser) port number 1234

Transport"

Firefox
(port 1234)

BIND
(port 53)

Transport

DNS Req

DNS Req 1234 53

DNS Req

DNS Req 1234 53

Final Exam Review.81!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

How do UDP packets Get to
Destination? 

"
•  A: Via network layer, i.e., Internet Protocol (IP)!

•  Implements datagram packet switching
– Enable two end-hosts to exchange packets

»  Each end-host is identified by an IP address
»  Each packets contains destination IP address
»  Independently routes each packet to its destination

– Best effort service
» No deliver guarantees
» No in-order delivery guarantees

Final Exam Review.82!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Network (IP) Layer (contʼd)"
•  Assume DNS server runs on machine 128.15.11.12

– Client configured with DNS server IP address
•  Client runs on machine 16.25.31.10

Transport"

BIND
(port 53)

Transport
DNS Req

DNS Req 1234 53

16.25.31.10

128.15.11.12

Network

Network DNS Req 1234 53 16.25.31.10 128.15.11.12

DNS Req 1234 53 16.25.31.10 128.15.11.12

DNS Req

DNS Req 1234 53

Firefox
(port 1234)

Final Exam Review.83!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

IP Packet Routing"

Host A

Host B
Host E

Host D

Host C

Router 1 Router 2

Router 3

Router 4

Router 5

Router 6 Router 7

•  Each packet is individually routed!

Final Exam Review.84!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

IP Packet Routing"

Host A

Host B
Host E

Host D

Host C

Router 1 Router 2

Router 3

Router 4

Router 5

Router 6 Router 7

•  Each packet is individually routed!
!

Final Exam Review.85!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Packet Forwarding"

•  Packets are first stored before being forwarded!
– Why?!

incoming links outgoing links Router

Memory

Final Exam Review.86!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Packet Forwarding Timing"

•  The queue has Q bits when packet arrives à packet
has to wait for the queue to drain before being
transmitted!

P bits!

time!

P/R!
T!

Q bits!

Queueing delay = Q/R!

Capacity = R bps!
Propagation delay = T sec!

Final Exam Review.87!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Packet Forwarding Timing"

Packet 1

Sender Receiver
Router1 Router 2

propagation
delay between
Host 1 and
Node 1

Final Exam Review.88!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Packet Forwarding Timing"

Packet 1

Packet 1

Packet 1 processing
delay of
Packet 1 at
Node 2

Sender Receiver
Router1 Router 2

propagation
delay between
Host 1 and
Node 1

transmission
time of Packet 1
at Host 1

Final Exam Review.89!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Packet Forwarding Timing"

Packet 1

Packet 2

Packet 3

Packet 1

Packet 2

Packet 3

Packet 1

Packet 2

Packet 3

processing
delay of
Packet 1 at
Node 2

Sender Receiver
Router 1 Router 2

propagation
delay between
Host 1 and
Node 1

transmission
time of Packet 1
at Host 1

Final Exam Review.90!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Packet Forwarding Timing: Packets
of Different Lengths"

Sender" Receiver"

10 Mbps" 5 Mbps" 100 Mbps" 10 Mbps"

time"

Final Exam Review.91!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Datalink Layer"

Transport"

Firefox
(port 1234) DNS Req

DNS Req 1234 53

IP address: 16.25.31.10
Datalink address: 111

Network

Network

DNS Req 1234 53 16.25.31.10 128.15.11.12

DNS Req 1234 53 16.25.31.10 128.15.11.12

Datalink

Datalink

DNS Req 1234 53 16.25.31.10 128.15.11.12 111 222

DNS Req 1234 53 16.25.31.10 128.15.11.12 111 222

Datalink address: 222

•  Enable nodes (e.g., hosts, routers) connected by same link to
exchange packets (frames) with each other!

– Every node/interface has a datalink layer address (e.g., 6 bytes)!
– No need to route packets, as each node on same link receives

packets from everyone else on that link (e.g., WiFi, Ethernet)!

Final Exam Review.92!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Datalink Layer"
•  Enable nodes (e.g., hosts, routers) connected by same link to

exchange packets (frames) with each other!
– Every node/interface has a datalink layer address (e.g., 6 bytes)!
– Network layer picks the next router for the packet towards

destination based on its destination IP address!

Network DNS Req 1234 53 16.25.31.10 128.15.11.12

Datalink DNS Req 1234 53 16.25.31.10 128.15.11.12 222 333

Datalink address: 333

Network DNS Req 1234 53 16.25.31.10 128.15.11.12

Datalink DNS Req 1234 53 16.25.31.10 128.15.11.12 222 333

Datalink address: 222

Final Exam Review.93!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Physical Layer"

•  Move bits of information between two systems
connected by a physical link!

•  Specifies how bits are represented (encoded), such as
voltage level, bit duration, etc !

•  Examples: coaxial cable, optical fiber links;
transmitters, receivers !

Final Exam Review.94!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

The Internet Hourglass"

Data Link"
Physical"

Applications"

The Hourglass Model"

Waist!

There is just one network-layer protocol, IP!
The “narrow waist” facilitates interoperability!

SMTP! HTTP! NTP!DNS!

TCP! UDP!

IP!

Ethernet! SONET! 802.11!

Transport"

Fiber!Copper! Radio!

Transport"

Network"

Datalink"

Physical"

Application"

Final Exam Review.95!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Implications of Hourglass & Layering"

Single Internet-layer module (IP):!

•  Allows arbitrary networks to interoperate!
– Any network technology that supports IP can exchange

packets!

•  Allows applications to function on all networks!
– Applications that can run on IP can use any network

technology!

•  Supports simultaneous innovations above and below IP!
– But changing IP itself, i.e., IPv6, very involved!

Final Exam Review.96!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

TCP Open Connection: 3-Way
Handshaking"

•  Goal: agree on a set of parameters: the start
sequence number for each side!

– Starting sequence numbers are random!

Client (initiator)" Server"

SYN, SeqNum = x"

SYN and ACK, SeqNum = y and Ack = x + 1"

ACK, Ack = y + 1"

Active  
Open"

Passive  
Open"

connect()" listen()"

accept()"

allocate  
buffer space"

Final Exam Review.97!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

TCP Flow Control & Reliability"
!

•  Sliding window protocol at byte (not packet) level!
– Receiver tells sender how many more bytes it can receive

without overflowing its buffer (i.e., AdvertisedWindow)!

•  Reliability!
– The ack(nowledgement) contains sequence number N of

next byte the receiver expects, i.e., receiver has received
all bytes in sequence up to and including N-1!

– Go-back-N: TCP Tahoe, Reno, New Reno!
– Selective acknowledgement: TCP Sack!

•  We didnʼt learn about congestion control (two lectures in
ee122) !

Final Exam Review.98!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Sliding Window"
•  window = set of adjacent sequence numbers!

•  The size of the set is the window size!

•  Assume window size is n!

•  Let A be the last ack’d packet of sender without gap; then window
of sender = {A+1, A+2, …, A+n} 
!

•  Sender can send packets in its window  
!

•  Let B be the last received packet without gap by receiver, then
window of receiver = {B+1,…, B+n} 
!

•  Receiver can accept out of sequence, if in window!

Final Exam Review.99!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Go-Back-n (GBN)"

•  Transmit up to n unacknowledged packets!

•  If timeout for ACK(k), retransmit k, k+1, …!

Final Exam Review.100!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

GBN Example w/o Errors"

Time!

Window size = 3 packets!

Sender! Receiver!

1!{1}!
2!{1, 2}!
3!{1, 2, 3}!
4!{2, 3, 4}!
5!{3, 4, 5}!

Sender Window! Receiver Window!

{}!

6!{4, 5, 6}!
.!
.!
.!

.!

.!

.!

{}!
{}!

Final Exam Review.101!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

GBN Example with Errors"

Window size = 3 packets!

Sender! Receiver!

1!
2!
3!
4!
5!

{}!
{}!
{}!

6!
{5}!
{5,6}!

4 is !
missing!Timeout!

Packet 4!

4!
5!
6! {}!

Final Exam Review.102!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Observations"

•  With sliding windows, it is possible to fully utilize a
link, provided the window size is large enough.
Throughput is ~ (n/RTT)!

– Stop & Wait is like n = 1.!

•  Sender has to buffer all unacknowledged packets,
because they may require retransmission!

•  Receiver may be able to accept out-of-order packets,
but only up to its buffer limits!

Final Exam Review.103!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Security"

Final Exam Review.104!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

How do You Secure your Credit Card?"

•  Use a secure protocol, e.g., HTTPS!

•  Need to ensure three properties:!
– Confidentiality: an adversary cannot snoop the traffic!
– Authentication: make sure you indeed talk with Amazon!
–  Integrity: an adversary cannot modify the message!

» Used for improving authentication performance!

•  Cryptography based solution:!
– General premise: there is a key, possession of which

allows decoding, but without which decoding is infeasible!
»  Thus, key must be kept secret and not guessable!

Final Exam Review.105!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Symmetric Keys "

•  Sender and receiver use the same key for encryption
and decryption!

•  Examples: AES128, DES, 3DES!

Internet!Encrypt with!
secret key!

Decrypt with!
secret key!

Plaintext (m)! m!

Ciphertext!

Final Exam Review.106!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Public Key / Asymmetric Encryption"
•  Sender uses receiverʼs public key!

– Advertised to everyone!
•  Receiver uses complementary private key!

– Must be kept secret!
•  Example: RSA!

Internet
Encrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext

Final Exam Review.107!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Symmetric vs. Asymmetric
Cryptography "

•  Symmetric cryptography!
+ Low overhead, fast!
– Need a secret channel to distribute key!

•  Asymmetric cryptography!
+ No need for secret channel; public key known by

everyone!
+ Provable secure!
– Slow, large keys (e.g., 1024 bytes) !

Final Exam Review.108!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Integrity"
•  Basic building block for integrity: hashing!

– Associate hash with byte-stream, receiver verifies match!
»  Assures data hasnʼt been modified, either accidentally - or

maliciously!

•  Approach: !
-  Sender computes a digest of message m, i.e., H(m)!

» H() is a publicly known hash function!
-  Send digest (d = H(m)) to receiver in a secure way, e.g.,!

» Using another physical channel!
» Using encryption (e.g., Asymmetric Key) !

-  Upon receiving m and d, receiver re-computes H(m) to see
whether result agrees with d!

-  Examples: MD5, SHA1!

Final Exam Review.109!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Operation of Hashing for Integrity"

Internet!Digest!
H(m)!

plaintext (m)!

digest!

Digest!
H(m)!
!

=!

digest’!

NO!
corrupted msg! m!

Final Exam Review.110!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Digital Certificates"

Alice, KAlice_pub!

Certificate!
Authority!

{Alice, KAlice_pub} !

(offline) identity verification!

E({Alice, KAlice_pub}, KVerisign_private)!
Digital certificate!

D(E({Alice, KAlice_pub}, KVerisign_private), KVerisign_public) = !{Alice, KAlice_pub} !

•  How do you know KAlice_pub is indeed Aliceʼs public key?!
•  Main idea: trusted authority signing binding between Alice and

its private key!

Bob!

Final Exam Review.111!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

HTTPS Connection (SSL/TLS)"
•  Browser (client) connects via

TCP to Amazonʼs HTTPS
server!

•  Client sends over list of
crypto protocols it supports!

•  Server picks protocols to use
for this session!

•  Server sends over its
certificate!

•  (all of this is in the clear)!

Browser! Amazon!

Hello. I support!
(TLS+RSA+AES128+SHA256) or!

(SSL+RSA+3DES+SHA1)

or …!
Let’s use!

TLS+RSA

+AES128+SHA1"

Here’s my cert"

~1 KB of data"

Final Exam Review.112!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Inside the Serverʼs Certificate"
•  Name associated with cert (e.g., Amazon)!
•  Amazonʼs RSA public key!
•  A bunch of auxiliary info (physical address, type of cert,

expiration time)!
•  Name of certificateʼs signatory (who signed it)!
•  A public-key signature of a hash (SHA1) of all this!

– Constructed using the signatory’s private RSA key, i.e.,!
– Cert = E(HSHA1(KApublic, www.amazon.com, …), KSprivate)!

»  KApublic: Amazon’s public key!
»  KSprivate: signatory (certificate authority) public key !

•  …!

Final Exam Review.113!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Validating Amazonʼs Identity"
•  How does the browser authenticate certificate signatory?!

– Certificates of few certificate authorities (e.g., Verisign) are
hardwired into the browser!

•  If it canʼt find the cert, then warns the user that site has not
been verified!

– And may ask whether to continue!
– Note, can still proceed, just without authentication!

•  Browser uses public key in signatoryʼs cert to decrypt
signature!

– Compares with its own SHA1 hash of Amazonʼs cert!
•  Assuming signature matches, now have high confidence

itʼs indeed Amazon …!
– … assuming signatory is trustworthy!

Final Exam Review.114!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Certificate Validation"
•  You (browser) want to make sure that KApublic is indeed

the public key of www.amazon.com !

E(HSHA1(KApublic, www.amazon.com, …), KSprivate), !
www.amazon.com, KApublic, KSpublic, …!

HSHA1(KApublic, www.amazon.com, …)!

E(HSHA1(…), KSpublic))!
(recall, KSpublic hardwired)!

=!

Yes!

Validation successful!

Validation failed!
No!

HSHA1(KApublic, www.amazon.com, …)!

HSHA1(…)!

Certificate!

Final Exam Review.115!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

HTTPS Connection (SSL/TLS), conʼt"

•  Browser constructs a random
session (symmetric) key K!

•  Browser encrypts K using
Amazonʼs public key!

•  Browser sends E(K, KApublic)
to server!

•  Browser displays!
•  All subsequent

communication encrypted w/
symmetric cipher (e.g.,
AES128) using key K!

–  E.g., client can authenticate
using a password!

Browser! Amazon!

Here’s my cert"

~1 KB of data"

E(K, KApublic)!
K"

K"

E(password …, K)!

E(response …, K)!

Agreed!

Final Exam Review.116!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Two-Phase Locking (2PL)"

Final Exam Review.117!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Concurrent Execution & Transactions"
•  Concurrent execution essential for good performance!

–  Disk slow, so need to keep the CPU busy by working on
several user programs concurrently!

•  DBMS only concerned about what data is read/written from/
to the database!

– Not concerned about other operations performed by program
on data!

•  Transaction – DBMSʼs abstract view of a user program,
i.e., a sequence of reads and writes.!

"
"

Final Exam Review.118!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Transaction - Example"

UPDATE accounts SET balance = balance -
100.00 WHERE name = 'Alice'; !

UPDATE branches SET balance = balance -
100.00 WHERE name = (SELECT branch_name
FROM accounts WHERE name = 'Alice');!

UPDATE accounts SET balance = balance +
100.00 WHERE name = 'Bob'; !

UPDATE branches SET balance = balance +
100.00 WHERE name = (SELECT branch_name
FROM accounts WHERE name = 'Bob');!

BEGIN; --BEGIN TRANSACTION

COMMIT; --COMMIT WORK

Final Exam Review.119!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

The ACID properties of Transactions"
•  Atomicity: all actions in the transaction happen, or

none happen!

•  Consistency: if each transaction is consistent, and the
DB starts consistent, it ends up consistent!

•  Isolation: execution of one transaction is isolated from
that of all others!

•  Durability: if a transaction commits, its effects persist!

Final Exam Review.120!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Transaction Scheduling"
•  Serial schedule: A schedule that does not interleave

the operations of different transactions!
– Transactions run serially (one at a time)!

!
•  Equivalent schedules: For any database state, the

effect (on the database) and output of executing the
first schedule is identical to the effect of executing the
second schedule!

!
•  Serializable schedule: A schedule that is equivalent

to some serial execution of the transactions!
–  Intuitively: with a serializable schedule you only see

things that could happen in situations where you were
running transactions one-at-a-time.!

!
!

Final Exam Review.121!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Conflict Serializable Schedules"
•  Two operations conflict if they!

– Belong to different transactions!
– Are on the same data !
– At least one of them is a write.!

•  Two schedules are conflict equivalent iff:!
–  Involve same operations of same transactions !
– Every pair of conflicting operations is ordered the same way!

•  Schedule S is conflict serializable if S is conflict equivalent to
some serial schedule!

Final Exam Review.122!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Conflict Equivalence – Intuition"
•  If you can transform an interleaved schedule by

swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable"

•  Example:!
T1:R(A),W(A), R(B),W(B)
T2: R(A),W(A), R(B),W(B) !

T1:R(A),W(A), R(B), W(B)
T2: R(A), W(A), R(B),W(B) !

T1:R(A),W(A),R(B), W(B)
T2: R(A),W(A), R(B),W(B) !

Final Exam Review.123!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Conflict Equivalence – Intuition (contʼd)"
•  If you can transform an interleaved schedule by

swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable"

•  Example:!
T1:R(A),W(A),R(B), W(B)
T2: R(A),W(A), R(B),W(B) !

T1:R(A),W(A),R(B), W(B)
T2: R(A), W(A),R(B),W(B) !

T1:R(A),W(A),R(B),W(B)
T2: R(A), W(A),R(B),W(B) !

Final Exam Review.124!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Conflict Equivalence – Intuition (contʼd)"
•  If you can transform an interleaved schedule by

swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable"

•  Is this schedule serializable?!

T1:R(A), W(A)
T2: R(A),W(A), !

Final Exam Review.125!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Dependency Graph"
•  Dependency graph: "

– Transactions represented as nodes!
– Edge from Ti to Tj: !

»  an operation of Ti conflicts with an operation of Tj!
»  Ti appears earlier than Tj in the schedule!

•  Theorem: Schedule is conflict serializable if and only if
its dependency graph is acyclic!

Final Exam Review.126!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Example"

•  Conflict serializable schedule:!

!

•  No cycle!!

T1 T2
A

Dependency graph"
B

T1:R(A),W(A), R(B),W(B)
T2: R(A),W(A), R(B),W(B) !

Final Exam Review.127!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Example"

•  Conflict that is not serializable:!

!

•  Cycle: The output of T1 depends on T2, and vice-
versa!

T1:R(A),W(A), R(B),W(B)
T2: R(A),W(A),R(B),W(B) !

T1 T2
A

B

Dependency graph"

Final Exam Review.128!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Notes on Conflict Serializability"
•  Conflict Serializability doesnʼt allow all schedules that

you would consider correct!
– This is because it is strictly syntactic - it doesnʼt consider

the meanings of the operations or the data!

•  In practice, Conflict Serializability is what gets used,
because it can be done efficiently!

– Note: in order to allow more concurrency, some special
cases do get implemented, such as for travel
reservations, …!

!
•  Two-phase locking (2PL) is how we implement it!

Final Exam Review.129!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Locks"
•  “Locks” to control access to data!

•  Two types of locks:!
– shared (S) lock – multiple concurrent transactions

allowed to operate on data!
– exclusive (X) lock – only one transaction can operate

on data at a time!

S X

S √ –

X – –

Lock"
Compatibility"
Matrix"

Final Exam Review.130!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Two-Phase Locking (2PL)"
1) Each transaction must obtain: !

–  S (shared) or X (exclusive) lock on data before reading, !
–  X (exclusive) lock on data before writing!

2) A transaction can not request additional locks once it
releases any locks.!

Thus, each transaction has a “growing phase” followed by a
“shrinking phase”!

0!
1!
2!
3!
4!

1! 3! 5! 7! 9! 11! 13! 15! 17! 19!

Lo

ck
s

H
el

d!

Time"

Growing!
Phase!

Shrinking!
Phase!

Lock Point!!

Final Exam Review.131!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Two-Phase Locking (2PL)"
•  2PL guarantees conflict serializability!

•  Doesnʼt allow dependency cycles; Why?!
•  Answer: a cyclic dependency cycle leads to deadlock!

–  Edge from Ti to Tj means that Ti acquires lock first and
Tj needs to wait!

–  Edge from Ti to Tj means that Ti acquires lock first and
Tj needs to wait!

–  Thus, both T1 and Tj wait for each other à deadlock!
!

•  Schedule of conflicting transactions is conflict
equivalent to a serial schedule ordered by “lock point”!

Final Exam Review.132!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Deadlock Prevention"
•  Assign priorities based on timestamps. Assume Ti

wants a lock that Tj holds. Two policies are possible:!
–  Wait-Die: If Ti is older, Ti waits for Tj; otherwise Ti aborts!
–  Wound-wait: If Ti is older, Tj aborts; otherwise Ti waits!

•  If a transaction re-starts, make sure it gets its original
timestamp!

– Why?!

Final Exam Review.133!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Example"
•  T1 transfers $50 from account A to account B!

•  T2 outputs the total of accounts A and B!

•  Initially, A = $1000 and B = $2000!

•  What are the possible output values?!

T1:Read(A),A:=A-50,Write(A),Read(B),B:=B+50,Write(B)!

T2:Read(A),Read(B),PRINT(A+B)!

Final Exam Review.134!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Is this a 2PL Schedule?"
Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Unlock(A) <granted>

Read(A)

Unlock(A)

Lock_S(B) <granted>

Lock_X(B)

Read(B)

 <granted> Unlock(B)

PRINT(A+B)

Read(B)

B := B +50

Write(B)

Unlock(B)

No, and it is not serializable

Final Exam Review.135!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Is this a 2PL Schedule?"
Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B) <granted>

Unlock(A) <granted>

Read(A)

Lock_S(B)

Read(B)

B := B +50

Write(B)

Unlock(B) <granted>

Unlock(A)

Read(B)

Unlock(B)

PRINT(A+B)

Yes, so it is serializable

Final Exam Review.136!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Cascading Aborts"
•  Example: T1 aborts!

– Note: this is a 2PL schedule!

•  Rollback of T1 requires rollback of T2, since T2 reads
a value written by T1!

•  Solution: Strict Two-phase Locking (Strict 2PL):
same as 2PL except

– All locks held by a transaction are released only when
the transaction completes !

T1:R(A),W(A), R(B),W(B), Abort
T2: R(A),W(A) !

Final Exam Review.137!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

 Strict 2PL (contʼd)"
•  All locks held by a transaction are released only when

the transaction completes!
!
•  In effect, “shrinking phase” is delayed until:!

a)  Transaction has committed (commit log record on
disk), or!

b)  Decision has been made to abort the transaction
(then locks can be released after rollback).!

Final Exam Review.138!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Is this a Strict 2PL schedule?"
Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B) <granted>

Unlock(A) <granted>

Read(A)

Lock_S(B)

Read(B)

B := B +50

Write(B)

Unlock(B) <granted>

Unlock(A)

Read(B)

Unlock(B)

PRINT(A+B)

No: Cascading Abort Possible

Final Exam Review.139!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Is this a Strict 2PL schedule?"
Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B) <granted>

Read(B)

B := B +50

Write(B)

Unlock(A)

Unlock(B) <granted>

Read(A)

Lock_S(B) <granted>

Read(B)

PRINT(A+B)

Unlock(A)

Unlock(B)

Final Exam Review.140!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Two-Phase Commit (2PC)"

Final Exam Review.141!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Two Phase (2PC) Commit"
•  2PC is a distributed protocol!

•  High-level problem statement!
–  If no node fails and all nodes are ready to commit, then

all nodes COMMIT!
– Otherwise ABORT at all nodes!

!
•  Developed by Turing award winner Jim Gray (first

Berkeley CS PhD, 1969)!

"

Final Exam Review.142!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Detailed Algorithm"

Coordinator	 sends	 VOTE-‐REQ	 to	 all	
workers	

–  Wait	 for	 VOTE-‐REQ	 from	 coordinator	
–  If	 ready,	 send	 VOTE-‐COMMIT	 to	

coordinator	
–  If	 not	 ready,	 send	 VOTE-‐ABORT	 to	

coordinator	
–  And	 immediately	 abort	

–  If	 receive	 VOTE-‐COMMIT	 from	 all	 N	
workers,	 send	 GLOBAL-‐COMMIT	 to	
all	 workers	

–  If	 doesn’t	 receive	 VOTE-‐COMMIT	
from	 all	 N	 workers,	 send	 GLOBAL-‐
ABORT	 to	 all	 workers	

–  If	 receive	 GLOBAL-‐COMMIT	 then	
commit	

–  If	 receive	 GLOBAL-‐ABORT	 then	 abort	

Coordinator Algorithm" Worker Algorithm"

Final Exam Review.143!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Failure Free Example Execution"

coordinator	

worker	 1	

Dme	

VOTE-‐
REQ	

VOTE-‐
COMMIT	

GLOBAL-‐
COMMIT	

worker	 2	

worker	 3	

Final Exam Review.144!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

State Machine of Coordinator"

•  Coordinator implements simple state machine!

INIT	

WAIT	

ABORT	 COMMIT	

Recv:	 START	
Send:	 VOTE-‐REQ	

Recv:	 VOTE-‐ABORT	
Send:	 GLOBAL-‐ABORT	

Recv:	 VOTE-‐COMMIT	
Send:	 GLOBAL-‐COMMIT	

Final Exam Review.145!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

State Machine of workers"

INIT	

READY	

ABORT	 COMMIT	

Recv:	 VOTE-‐REQ	
Send:	 VOTE-‐ABORT	

Recv:	 VOTE-‐REQ	
Send:	 VOTE-‐COMMIT	

Recv:	 GLOBAL-‐ABORT	 Recv:	 GLOBAL-‐COMMIT	

Final Exam Review.146!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Dealing with Worker Failures"

•  How to deal with worker failures?!
– Failure only affects states in which the node is waiting for

messages!
– Coordinator only waits for votes in ”WAIT” state!
–  In WAIT, if doesnʼt receive !
!N votes, it times out and sends!
!GLOBAL-ABORT!

INIT	

WAIT	

ABORT	 COMMIT	

Recv:	 START	
Send:	 VOTE-‐REQ	

Recv:	 VOTE-‐ABORT	
Send:	 GLOBAL-‐ABORT	

Recv:	 VOTE-‐COMMIT	
Send:	 GLOBAL-‐COMMIT	

Final Exam Review.147!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Dealing with Coordinator Failure"

•  How to deal with coordinator failures?!
– worker waits for VOTE-REQ in INIT!

» Worker can time out and abort (coordinator handles it)!
– worker waits for GLOBAL-* message in READY!

»  If coordinator fails, workers must!
"BLOCK waiting for coordinator!
!to recover and send!
!GLOBAL_* message!

!

INIT	

READY	

ABORT	 COMMIT	

Recv:	 VOTE-‐REQ	
Send:	 VOTE-‐ABORT	

Recv:	 VOTE-‐REQ	
Send:	 VOTE-‐COMMIT	

Recv:	 GLOBAL-‐ABORT	 Recv:	 GLOBAL-‐COMMIT	

Final Exam Review.148!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Example of Coordinator Failure #1"

coordinator	

worker	 1	

VOTE-‐
REQ	

VOTE-‐
ABORT	

Dmeout	

INIT	

READY	

ABORT	 COMM	

Dmeout	

Dmeout	

worker	 2	

worker	 3	

Final Exam Review.149!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Example of Coordinator Failure #2"

VOTE-‐REQ	

VOTE-‐
COMMIT	

INIT	

READY	

ABORT	 COMM	

block	 waiDng	 for	
coordinator	

restarted	

GLOBAL-‐
ABORT	

coordinator	

worker	 1	

worker	 2	

worker	 3	

Final Exam Review.150!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Remembering Where We Were"

•  All nodes use stable storage to store which state they
were in!

•  Upon recovery, it can restore state and resume:!
– Coordinator aborts in INIT, WAIT, or ABORT!
– Coordinator commits in COMMIT!
– Worker aborts in INIT, READY, ABORT!
– Worker commits in COMMIT!

Final Exam Review.151!05/04/2011! Mosharaf Chowdhury and Karthik Reddy CS162 ©UCB Spring 2012!

Blocking for Coordinator to Recover"
•  A worker waiting for global decision

can ask fellow workers about their
state!

–  If another worker is in ABORT or
COMMIT state then coordinator must
have sent GLOBAL-*!

– Thus, worker can safely abort or
commit, respectively!

–  If another worker is still in INIT state!
!then both workers can decide to abort !

–  If all workers are in ready, need to
BLOCK (donʼt know if coordinator
wanted to abort or commit)!

INIT	

READY	

ABORT	 COMMIT	

Recv:	 VOTE-‐REQ	
Send:	 VOTE-‐ABORT	

Recv:	 VOTE-‐REQ	
Send:	 VOTE-‐COMMIT	

Recv:	 GLOBAL-‐ABORT	 Recv:	 GLOBAL-‐COMMIT	

