CS162 Section

Lecture 11

Project 4

Implement a distributed key-value store that
uses

— Two-Phase Commit for atomic operations,
— Replication for performance and fault-tolerance,
— Encryption for security

Distributed Key-Value Store

Client 1

Client 2

Client 3

Client 4

Client 5

Consistent Hashing

e SlaveServer 128-bit ID
using java.util.GUID

— Slave count known in
advance

— Nodes will come back if
fails (no permanent
failure)

* Hash Keys to 128-bit
numbers

266

Client-side Program

Client-side Program

Client-side Program

KVClient (Library)

KVClient (Library)

KVClient (Library)

KVMessage
Socket Server
v
KVClientHandler
)

y Job Queue TPCMaster (Library)
()

t KVCache

c | (LRU Cache) Available

= L >

§ Threads Update

K Thread Pool /

—

e

[GET

[PUT

[DEL]

KVMessage

AN

rdinator #erver

TPCMessage

Key-Value Server Key-Value Server Key-Value Server

/ Socket Server \

v
TPCClientHandler

/ \ ()] Q
Job Queue [€ q§ KVCache q§

f'c_’, (LRU % KVStore
Available > TPClog [S Cache) |21 =
Threads —] < >~

\ Thread Pool)
K KeyValue Server /

Client 1 Client 2 Key Server KVCache KVStore

| | | | |
| |\: | 1
| | PUT (K,V) 1. Get WriteLock I |
| | — | |
: : : : 1>: Update Value
L GET(K) I [|
I t | I 1. Get WriteLock I
| | 11, Get ReadLock I'2. update Value I
| I I I 3. Get Exclusive Lock on !
I I I I AccesslList I
I I Get ReadlLock I I 4, Release WriteLock I
: : blocked : : 5. Update AccessList :
6. Release lock on
I : : ! AccesslList :
: I Success -/: !
I / |2- Release WriteLock | I
I I Vll' Got Readlock I |
| I |\>' 1. Get ReadlLock I
| I I I 2. Get value I
I I I I 3. Get Exclusive Lock on I
I I ! I AccesslList I
| I I I 4. Release ReadLock I
: : : : 5. Update AccesslList :
6. Release lock on
I . . . AccesslList .
| | | 1 |
|<__ I 2. Release ReadlLock |
| | |
| I |
| 1 |

||||®.||||4 |||||| b

|
|
|
|
|
[

o
— 8
5 g
()
V P
| -
e J IIIII s el e s - e e - - o o o S S - -
(@p)]
()
>
£ —
n e
(@] —
2 b
2 < o)
< W oD
o <
[< ~
o L - 4
o o = O
Q : = > <
h w) M
Sl 421 -1 Ol ===k -
A RE
& o o
~ 2]
Q (@]
S L
] ()
X
[
| -
s| = .
..m [}
SL_F vy W
O b= == - — e mm mm e e e o e e o o Ve e e e o
m % |||||||
o ——— o o Lw
O S
R
— ec
> x O
N - O
= &
o
o o
4
(e
O
o

Client 1

Client 1

K,V

Client 2

Get ReadLock
blocked

Success

Coordinator

KVCache

S ELCEEET

I 2. Release WriteLock
A 1. Get ReadLock

\>

2. Release Readlock

e

—,

1. Got WriteLock

2. Update Value

3. Get Exclusive Lock on
AccesslList

4. Release WriteLock

5. Update AccessList

6. Release lock on
AccesslList

1. Got ReadLock

2. Get Value

3. Get Exclusive Lock on
AccesslList

4. Release ReadlLock

5. Update AccessList

6. Release lock on
Accesslist

SlaveServer 1

SlaveServer 2

Recovery from Site Log Entries

VR
Ready
N

N N N
Commit Abort
N N

What is MTBF?
What is MTTR?

Fault Models

Failures are independent”
So, single fault tolerance is a big win

Hardware fails fast (blue-screen, panic, ...)
Software fails-fast (or stops responding/hangs)

Software often repaired by reboot:
— Heisenbugs — Works On Retry
— (Bohrbugs — Faults Again On Retry)

Operations tasks: major source of outage
— Utility operations — UPS/generator maintenance
— Software upgrades, configuration changes

Fault Tolerance Techniques

Fail fast modules: work or stop
Spare modules: yield instant repair time

Process/Server pairs: Mask HW and SW
faults

Transactions: yields ACID semantics (simple
fault model)

Fault-tolerance in MapReduce

e What if

— A task crashes
— A node crashes

e Worker node
e Master node

— A task is going slow

Key Security Properties

Authentication
Data integrity
Confidentiality
Non-repudiation

Lxvnkbgz Vhffngbvtmbhg pbma
Vkrimhzktiar

* Vhffngbvtmbhg bg ikxIxgvx hy twoxkltkbxl

* Maxkx bl t dxr, ihlIxllbhg hy pabva teehpl

wxvhwbgz, unm pbmahnm pabva wxvhwbgz
bl bgyxtlbuex

— Manl, dxr fnlm ux dxim Ixvkxm tgw ghm znxlltuex

Securing Communication with
Cryptography

 Communication in presence of adversaries

* There is a key, possession of which allows
decoding, but without which decoding is
infeasible

— Thus, key must be kept secret and not guessable

Using Symmetric Keys
 Same key for encryption and decryption

Plaintext (m) m

Internet

Decrypt with
secret key

Encrypt with
secret key

Ciphertext

* Transferring keys over the network is
problematic

Public Key / Asymmetric Encryption

* Sender uses receiver’s public key
— Advertised to everyone

* Receiver uses complementary private key
— Must be kept secret

Plaintext Plaintext

Internet

Decrypt with
private key

Encrypt with
public key

Ciphertext

Properties of RSA

Requires generating large, random prime numbers
— Algorithms exist for quickly finding these (probabilistic!)

Requires exponentiation of very large numbers

— Again, fairly fast algorithms exist

Overall, much slower than symmetric key crypto

— One general strategy: use public key crypto to exchange a (short) symmetric session key
* Use that key then with AES or such

How difficult is recovering d, the private key?

— Equivalent to finding prime factors of a large number
* Many have tried - believed to be very hard (= brute force only)
* (Though quantum computers can do so in polynomial time!)

