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Project 4

Implement a distributed key-value store that
uses

— Two-Phase Commit for atomic operations,
— Replication for performance and fault-tolerance,
— Encryption for security



Distributed Key-Value Store
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Consistent Hashing

e SlaveServer 128-bit ID
using java.util.GUID

— Slave count known in
advance

— Nodes will come back if
fails (no permanent
failure)

* Hash Keys to 128-bit
numbers
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Client 1
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Recovery from Site Log Entries

VR
Ready
N

N N N
Commit Abort
N N




What is MTBF?
What is MTTR?



Fault Models

Failures are independent”
So, single fault tolerance is a big win

Hardware fails fast (blue-screen, panic, ...)
Software fails-fast (or stops responding/hangs)

Software often repaired by reboot:
— Heisenbugs — Works On Retry
— (Bohrbugs — Faults Again On Retry)

Operations tasks: major source of outage
— Utility operations — UPS/generator maintenance
— Software upgrades, configuration changes



Fault Tolerance Techniques

Fail fast modules: work or stop
Spare modules: yield instant repair time

Process/Server pairs: Mask HW and SW
faults

Transactions: yields ACID semantics (simple
fault model)



Fault-tolerance in MapReduce

e What if

— A task crashes
— A node crashes

e Worker node
e Master node

— A task is going slow



Key Security Properties

Authentication
Data integrity
Confidentiality
Non-repudiation



Lxvnkbgz Vhffngbvtmbhg pbma
Vkrimhzktiar

* Vhffngbvtmbhg bg ikxIxgvx hy twoxkltkbxl

* Maxkx bl t dxr, ihlIxllbhg hy pabva teehpl

wxvhwbgz, unm pbmahnm pabva wxvhwbgz
bl bgyxtlbuex

— Manl, dxr fnlm ux dxim Ixvkxm tgw ghm znxlltuex



Securing Communication with
Cryptography

 Communication in presence of adversaries

* There is a key, possession of which allows
decoding, but without which decoding is
infeasible

— Thus, key must be kept secret and not guessable



Using Symmetric Keys
 Same key for encryption and decryption

Plaintext (m) m

Internet

Decrypt with
secret key

Encrypt with
secret key

Ciphertext

* Transferring keys over the network is
problematic



Public Key / Asymmetric Encryption

* Sender uses receiver’s public key
— Advertised to everyone

* Receiver uses complementary private key
— Must be kept secret

Plaintext Plaintext

Internet

Decrypt with
private key

Encrypt with
public key

Ciphertext




Properties of RSA

Requires generating large, random prime numbers
— Algorithms exist for quickly finding these (probabilistic!)

Requires exponentiation of very large numbers

— Again, fairly fast algorithms exist

Overall, much slower than symmetric key crypto

— One general strategy: use public key crypto to exchange a (short) symmetric session key
* Use that key then with AES or such

How difficult is recovering d, the private key?

— Equivalent to finding prime factors of a large number
* Many have tried - believed to be very hard (= brute force only)
* (Though quantum computers can do so in polynomial time!)



