CS 162
Discussion Section
Week 3



Who am I?

Mosharaf Chowdhury
http://www.mosharaf.com

Cs162-ta@cory.eecs.berkeley.edu
Office Hours: @ 651 Soda 4-5PM W && 9-10AM F

Research
Datacenter Networks

Cloud Computing



Project 1

* Can be found in the course website
— Under the heading “Projects and Nachos”

e Stock Nachos has an incomplete thread
system. Your job is to

— complete it, and
— use it to solve several synchronization problems



Project 1 Grading

* Design docs [40 points]
— First draft [10 points]
— Design review [10 points]
— Final design doc [20 points]

* Code [60 points]



Design Document

* Overview of the project as a whole along with
Its parts

 Header must contain the following info
— Project Name and #
— Group Members Name and ID
— Section #
— TA Name



Design Document Structure

Each part of the project should be explained
using the following structure

* Overview

* Correctness Constraints
* Declarations

* Descriptions

e Testing Plan



Design Docup

 First draft [9t" Feb]

— Initial ideas
— At most 10 pages

* Final draft [22"9 Feb]
— At most 15 pages

Talking much about
oneself can also be a
means to conceal
oneself

-- Friedrich Nietzsche

Talking too much about
your design is a means
to conceal your ideas.
Overdo it to lose 20%.
-- CS162 Teaching Staff

* Include diagram showing interactions
between system components



1. Signup for a timeslot
in your section.

2. If anyone is absent,

everyone loses 20%

on the whole project

Project 1 Dec

Initial design: 9" Feb
Design reviews: Week of 13t Feb
Code: 21° Feb

Group evaluations, test cases, and final design
docs: 22" Feb




Synchronization.
Say what?!



Definitions

* Synchronization: using atomic operations to ensure
cooperation between threads

* Mutual Exclusion: ensuring that only one thread does a
particular thing at a time

— One thread excludes the other while doing its task

* Critical Section: piece of code that only one thread can
execute at once
— Critical section is the result of mutual exclusion

— Critical section and mutual exclusion are two ways of
describing the same thing



Where are we going with
synchronization?



Programs | Shared Programs

Higher-level

AP Locks Semaphores Monitors Send/Receive

Hardware |Load/Store Disable Ints Test&Set Comp&Swap

* We are going to implement various higher-level
synchronization primitives using atomic operations
— Everything is pretty painful if only atomic primitives
are load and store
— Need to provide primitives useful at user-level




Examples of Read-Modify-Write

test&set (&address) { /* most architectures */
result = M[address];
M[address] = 1;

return result;

swap (&address, register) { /* x86 */
temp = M[address];
M[address] = regilister;
register = temp;

compare&swap (&address, regl, reg2) { /* 68000 */

1f (regl == [address]) |
M[address] = reg2;
return success;

} else {

return failure;

}



Implementing Locks with test&set

Busy-wai@
7 ree

while (testé&set(value)); // while busy
}
Release () {

value = 0;

}

« Simple explanation:

— If lock is free, test&set reads 0 and sets value=1, so lock is
now busy. It returns O so while exits

— If lock is busy, test&set reads 1 and sets value=1 (no
change). It returns 1, so while loop continues

— When we set value = 0, someone else can get lock



test&set without busy-waiting? => Nope
* Only busy-wait to atomically check lock value

int guard
int value

= 0;

= FREE;

Acquire() {
// Short busy-wait time
while (testé&set(guard)) ;
if (value == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;

} else {
value = BUSY;
guard = 0;

}

Release () {

// Short busy-wait time

while (testé&set(guard));

if anyone on wait queue ({
take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}

guard = 0;

* Note: sleep has to be sure to reset the guard variable
— Why can’t we do it just before or just after the sleep?



Life without locks?



Semaphores

A Semaphore has a non-negative integer value
(S) and supports the following two operations

— P(S) = Down(S) = Wait(S)
— V(S) = Up (S) = Signal(S)

* Note that P() stands for “proberen” (to test) and V() stands for
“verhogen” (to increment) in Dutch



Classical definition of Wait and Signal

Busy-wai@
Wait (S)

while (S <= 0) { }
S =8 -1;

Signal (S) {
S =S + 1;



Blocking implementation of Semaphore

Wait(S) {
S.val = S.val - 1;
if (S.val < 0) {
S.list.add(calling thread) ;
sleep() ;

} Initialize (S, X) {
S.val = X

Signal(S) { }

S.val = S.val + 1;

if (S.val <= 0) {
T = S.list.removeHead() ;
wakeup (T) ;



Mutex

e Used to control access to shared data
— Only one thread can execute inside a Mutex
— Others are blocked until the Mutex is unlocked

* Can be implemented using Semaphore

— Just initialize your Semaphore to 1



Condition Variables (CV)

* Used to wait for specific events; e.g.,

— When free memory is too low; wake up the
garbage collector

— New packet arrived from the network; push it to
appropriate handlers

* Each CV has a single associated Mutex

— Condition of the CV depends on data protected by
the Mutex



Condition Variables Semantics

e Wait
— Atomically unlocks the Mutex and blocks the
thread

* Signal
— Thread is awaken inside Wait
— Tries to Lock the Mutex
— When it (finally) succeeds, returns from Wwait



CV Example

Mutex io mutex;
Condition non_ empty;

Consumer:
Lock (io mutex) ({
while (port.empty())
Wait(io mutex, non empty) ;
process _data(port.first in());

}

Producer:

Lock (io mutex) ({
port.add data();
Signal (non_empty) ;



