CS162 Section

Lecture 9

Project 3

"A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable"

-- Leslie Lamport

What is Bandwidth? What is Latency?

- RTT of 100ms
- Packet size of 1 KB
- Initial handshake of 2 RTTs
- Bandwidth is 1.5 Mbps

How long does it take to transfer a 1000 KB file.

Packet Transfer is continuous

- RTT of 100ms
- Packet size of 1 KB
- Initial handshake of 2 RTTs
- Bandwidth is 1.5 Mbps

How long does it take to transfer a 1000 KB file.

Packet Transfer is one at a time

Transfer data at speed of light (3 x 10⁸ m/s)

What is the RTT of the link?

How is a packet generated inside the Operating System?

- Time to process an interrupt, $T_{int} = 1.5 \text{ ms}$
- CPU cycle time, T_{CPU} = 10 ns
- Packet size, N_{pkt} = 1000B (ignore headers)
- Time to copy or DMA one byte, $T_{copy} = 1 \mu s$
- Latency of a link, T_{link} = 3 ms
- Bandwidth of links, B = 8Mbps

How many buffer copies are there to transmit a single packet?

- Time to process an interrupt, $T_{int} = 1.5 \text{ ms}$
- CPU cycle time, $T_{CPU} = 10 \text{ ns}$
- Packet size, N_{pkt} = 1000B (ignore headers)
- Time to copy or DMA one byte, $T_{copy} = 1 \mu s$
- Latency of a link, T_{link} = 3 ms
- Bandwidth of links, B = 8Mbps

How many interrupts are generated to transmit a single packet?

- Time to process an interrupt, T_{int} = 1.5 ms
- CPU cycle time, $T_{CPU} = 10 \text{ ns}$
- Packet size, N_{pkt} = 1000B (ignore headers)
- Time to copy or DMA one byte, $T_{copy} = 1 \mu s$
- Latency of a link, $T_{link} = 3$ ms
- Bandwidth of links, B = 8Mbps

What is the time to reliably send a single packet from Node 1 to Node 2?

- Time to process an interrupt, T_{int} = 1.5 ms
- CPU cycle time, $T_{CPU} = 10 \text{ ns}$
- Packet size, N_{pkt} = 1000B (ignore headers)
- Time to copy or DMA one byte, $T_{copy} = 1 \mu s$
- Latency of a link, T_{link} = 3 ms
- Bandwidth of links, B = 8Mbps

What is the maximum rate possible between Node 1 to Node 2?

TCP

- Connection Setup 3 way handshake
- Byte Stream Oriented (NOTE!)
- Reliable data transfer
- Flow control
- Congestion control
- Connection tear down (4 way)

TCP Connection Setup

TCP Connection Setup

TCP Connection Teardown

4-ways tear down connection

Key Value Stores

- Very large scale storage systems
- Two operations
 - put(key, value)
 - value = get(key)
- Challenges
 - Fault Tolerance → replication
 - Scalability → serve get()'s in parallel; replicate/cache hot tuples
 - Consistency

 quorum consensus to improve put()

 performance

Key Value Stores

Also called a Distributed Hash Table (DHT)

Main idea: partition set of key-values across

many machines

Chord Lookup

- Each node maintains pointer to its successor
- Route packet (Key, Value) to the node responsible for ID using successor pointers
- E.g., node=4 lookups for node responsible for Key=37

Chord

- Highly scalable distributed lookup protocol
- Each node needs to know about O(log(M)),
 where M is the total number of nodes
- Guarantees that a tuple is found in O(log(M)) steps
- Highly resilient: works with high probability even if half of nodes fail