
CS162 Section 1

True/False

• Threads within the same process share the
same heap and stack.

• False: The heap is shared; each thread has it’s
own stack.

True/False

• Preemptive multithreading requires threads to
give up the CPU using the yield() system call.

• False: Preemptive multithreading uses
interrupts to schedule context switches.

True/False

• Despite the overhead of context switching,
multithreading can provide speed-up even on
a single-core cpu.

• True: Context switch to avoid blocking on I/O.

Short Answer

• What is the OS data structure that represents
a running process?

• Answer: PCB

Short Answer

• What are some of the similarities and
differences between interrupts and system
calls? What roles do they play in preemptive
and non-preemptive multithreading?

Interrupts

• An interrupt is an electronic signal to the
processor from an external device indicating
that an external event needs attention.

• Physical bus (line) connecting devices to the
cpu.

• Alternative to polling (cpu constantly checks if
an I/O device is ready).

Handling the Interrupt

• Hardware saves the PC.

• Use interrupt vector to determine what interrupt
handler (aka interrupt service routine) to call.

• ISR is just a piece of code in the kernel.

• The interrupt handler saves the current
process/thread to its PCB/TCB.

• ISR performs its job, often I/O.

• Call the scheduler.

Handling the Interrupt

• Prior to calling the interrupt handler, the
hardware may disable (mask) certain
interrupts.

• Why disable interrupts?

System Calls

• Also referred to as software interrupts or
synchronous interrupts (as opposed to
asynchronous hardware interrupts).

• Special instruction that causes a transition
from user to kernel mode when executed.

• fork(), open(), etc.

• Handled the same as hardware interrupts:
interrupt vector => ISR => scheduler

Traps/Exceptions

• Also falls into the category of software
interrupts.

• Requires kernel intervention.

• Could be because of errors: divide by zero.

• Page Faults is another example.

True/False

• Every interrupt results in a transition from
user to kernel mode. Hint: think Inception.

• False: Another interrupt can occur while
servicing the current interrupt.

Concurrency Problem

• Java local variables live on the stack.

• Instance variables live on the heap.

Scenario 1

• No problem.

• Result is the same as if thread B and then
thread A called add() serially.

Scenario 2

• Problem.

• As if thread B’s add() never occurred.

Scenario 3

• No problem.

• Result is the same as if thread A and then
thread B called add() serially.

