CS162 Section 1



True/False

* Threads within the same process share the
same heap and stack.

* False: The heap is shared; each thread has it’s
own stack.



True/False

* Preemptive multithreading requires threads to
give up the CPU using the yield() system call.

* False: Preemptive multithreading uses
interrupts to schedule context switches.



True/False

* Despite the overhead of context switching,
multithreading can provide speed-up even on

a single-core cpu.
* True: Context switch to avoid blocking on 1/0.



Short Answer

 What is the OS data structure that represents
a running process?

* Answer: PCB



Short Answer

* What are some of the similarities and
differences between interrupts and system
calls? What roles do they play in preemptive
and non-preemptive multithreading?



Interrupts

* Aninterrupt is an electronic signal to the
processor from an external device indicating
that an external event needs attention.

e Physical bus (line) connecting devices to the
Cpu.

e Alternative to polling (cpu constantly checks if
an |/O device is ready).



Handling the Interrupt

Hardware saves the PC.

Use interrupt vector to determine what interrupt
handler (aka interrupt service routine) to call.

ISR is just a piece of code in the kernel.

The interrupt handler saves the current
process/thread to its PCB/TCB.

ISR performs its job, often |/O.
Call the scheduler.



Handling the Interrupt

* Prior to calling the interrupt handler, the
hardware may disable (mask) certain
Interrupts.

 Why disable interrupts?



System Calls

Also referred to as software interrupts or
synchronous interrupts (as opposed to
asynchronous hardware interrupts).

Special instruction that causes a transition
from user to kernel mode when executed.

fork(), open(), etc.

Handled the same as hardware interrupts:
interrupt vector => ISR => scheduler



Traps/Exceptions

Also falls into the category of software
Interrupts.

Requires kernel intervention.
Could be because of errors: divide by zero.
Page Faults is another example.



True/False

* Every interrupt results in a transition from
user to kernel mode. Hint: think Inception.

* False: Another interrupt can occur while
servicing the current interrupt.



Concurrency Problem

* Java local variables live on the stack.
* |nstance variables live on the heap.



Scenario 1

* No problem.

e Resultis the same as if thread B and then
thread A called add() serially.



Scenario 2

* Problem.
e Asif thread B’s add() never occurred.



Scenario 3

* No problem.

e Resultis the same as if thread A and then
thread B called add() serially.



