Section 5: Address Translation & Caches and TLBs

Short Answer

1.

If a computer has a 32 bit address space, and 1K (i.e. 2210 bytes) sized pages, how
many page table entries does it have? (fine to express answer base-2).

2732/2710 =222 =2"2*2"20 = 4M = ~4Million

If you have a very large virtual address space, what are the benefits of using an inverted
page table? What are the drawbacks?

Benefit: Table’s size is directly proportional to the size of physical memory, as opposed to
the size of virtual memory, which is typically much larger than physical memory.
Drawback: Requires maintaining a hash table in hardware, which is hard

Long Answer

Caching: Assume a computer system employing a cache, where the access time to the main

memory is 100 ns, and the access time to the cache is 20ns.

1.

Assume the cache hit rate is 95%. What is the average access time?

Average Access Time = Hit*cache_access_time + (1Hit)*memory_access_time
=0.95*20 ns + 0.05*100 ns = 24 ns
Alternatively, we accepted solutions that included the cache time in the memory

access time: AAT = 0.95 * 20 ns + 0.05 * (20 ns + 100 ns) = 25 ns.

Assume the system implements virtual memory using a two--level page table with no
TLB, and assume the CPU loads a word X from main memory. Assume the cache hit rate
for the page entries as well as for the data in memory is 95%. What is the average time it
takes to load X?

The Average Memory Access Time for X (AMAT) requires three memory accesses, two for
each page entry, and one for reading X: 3*24 = 72 ns.
The alternate solution from (a) yields 3*25 = 75 ns. We only accepted the alternate
solution for (b) if you derived the same value for (a)



Longer Answer (From Fall 2012 Midterm)
Assume a system with a two level page table. The virtual memory address space is 32 bits and
the physical memory address space is 16 bits.
1. Make sure that each translation table fits in a page.
a. What is the optimal page size? 4 KB
b. Specify the length of each field in the virtual address.

(bit 31) (bit 0)

Virtual P1 Index Virtual P2 Index Offset

10 10 12

2. Assume you add to your system a 4- way set--associative data cache with 16 total cache
blocks. Each block in the cache holds 8 bytes of data. In order to address a specific byte
of data, you will have to split the address into the cache tag, cache index and byte
select. Assume there are no modifiers bits in the table.

(bit 31) (bit 0)

tag index byte select

16-3-2 = 11 16 blocks/4 (272) = 2 8 bytes (273) = 3

5. (18 points) Paging:

Suppose you have a system with 32-bit pointers and 4 megabytes of physical memory that is
partitioned into 8192-byte pages. The system uses an Inverted Page Table (IPT). Assume that
there is no page sharing between processes.

a. Describe what page table entries should look like. Specifically, how many bits should be in
each page table entry, and what are they for? Also, how many page table entries should there
be in the page table?



Virtual addresses are 32 bits, and split into wo parts. The page number is the
first 19 bits, and the offset within the page is the last 13 bits (27 = 8,192).
Virtual Page Number Offset

19 bits 13 bits

The inverted page table is a mapping of physical addresses to virtual addresses.
Memaory is 4 megahvies, partitioned into 312 pages. Therefore the inverted page
table will consist of 512 entries. Each of these entries must have:

19 bits for the virtual page number of the physical page.

Some number of bits (16 in Unix) for the processs 1D of the process that

owns the page.

Protecrion bits (riw/x)

We awarded tweo points each for: the correct number of IPT entries,
storing the virtual page number in the 1PT, storing the process ID in the
IPT, and storing the protection bits{any reasonable set was accepied) in
the IPT.

We subtracted one point for each extraneous item that vou stored in the
IPT, and subtracted one point for storing the physical page number
instead of the virtual page number in the IPT.

b. Describe how an IPT is used to translate a virtual address into a physical address.

A virtual address is translated to a physical address hashing virtual addresses
{worth two points). Thus, in the normal case, the translation may be found in a
few memory lookups rather than an entire table traversal. If it is found, and the
owning process is equal to the current running process (owning PID check is
worth 2 points), then its index in the table is the frame number of the physical
page. If it is not found, then a memory fault must occur (not found fault is worth 1
point).

We also accepted a general search of the IPT, as described in the book and
midterm review session.



