
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS 164 P. N. Hilfinger

Spring 2010

Using Subversion

1 Introduction

A version-control system (also source-code control system or revision-control system) is a utility for
keeping around multiple versions of files that are undergoing development. Basically, it maintains
copies of as many old and current versions of the files as desired, allowing its users to retrieve old
versions (for example, to “back out” of some change they come to regret), to compare versions of a
file, to merge changes from independently changing versions of a file, to attach additional information
(change logs, for example) to each version, and to define symbolic labels for versions to facilitate later
reference. No serious professional programmer should work without version control of some kind.

Subversion, which we’ll be using this semester, is an open-source version-control system that
enjoys considerable use. The basic idea is simple: Subversion maintains repositories, each of which
is a set of versions (plus a little global data). A version is simply a snapshot of the contents of an
entire directory structure—a hierarchical collection of directories (or “folders” in the Mac and PC
worlds) that contain files and other directories. A repository’s administrator (in this class, that’s the
staff), can control which parts of the repository any given person or group has access to.

At any given time, you may have checked out a copy of all or part of one of these versions into one
of your own directories (known as a working directory). You can make whatever changes you want
(without having any effect on the repository) and then create (commit or check in) a new version
containing modifications, additions, or deletions you’ve made in your working directory.

If you are working in a team, another member might check out a completely independent copy of
the same version you are working on, make modifications, and commit those. You may both, from
time to time, update your working directory to contain the latest committed files, including changes
from other team members. Should several of you have changed a particular file—you in a committed
revision, let us say, and others in their working copies—then the others can update their working
copies with your changes, merging in any of your changes to files you’ve both modified. After these
team members then commit the current state of their working directories, all changes they’ve made
will be available to you on request. If you attempt to commit a file that someone else has modified
and committed, then Subversion will require you to update your file (merging these committed
changes into it) before it will allow you to commit.

In this class, I may give you various code skeletons to be filled in with your solutions. Sometimes,
these skeletons may contain errors I wish to fix, or I might take pity and add a useful method or two
after handing out the assignment. By distributing these skeletons to you in the repository, I make it
possible for you to merge my changes in the skeletons into your own work, without your having to
find our changes and apply them by hand.

1

Using Subversion 2

Should you mess something up, all the versions you created up to that point still exist unchanged
in the repository. You can simply fall back to a previous version entirely, or replace selected files from
a previous version. Of course, to make use of this facility, you must check your work in frequently.

Even though the abstraction that Subversion presents is that of numbered snapshots of entire
directory trees full of files, its representation is far more efficient. It actually stores differences between
versions, so that storing a new version that is little changed from a previous one adds little data to
the repository. In particular, the representation makes it particularly fast and cheap to create a new
version that contains an additional copy of an entire subdirectory (but in a different place and with a
different name). No matter how big the subdirectory is, the repository contains only the information
of what subdirectory in what version it was copied from. As we’ll see, you can use these cheap copies
to get the effect of branching a project, and of tagging (naming) specific versions. These copies have
other uses as well. In particular, they allow you to import a set of skeleton files for an assignment
without significantly increasing the size of the repository.

Subversion is an example of a client/server system. That is, running it requires two programs,
one of which (the server) accesses the repository and responds to requests from the other program
(the client), which is what you run. The client and server need not run on the same machine, allowing
remote access to the repository. We have one server program, which the staff will look after, and
several alternatives for the client program, depending on how you are working. In this document,
we’ll describe the standard command-line client (called svn), which you run in a shell. The staff
will maintain a Subversion repository containing subdirectories for each of you on the instructional
machines under a staff account (cs164-ta). The Subversion server program manipulates this
repository and runs on one of the instructional machines. You will be able to run the Subversion

client program (svn) either from your class account or remotely from any machine where svn is
installed.

What follows is specific to this course. Subversion actually allows much more flexible use than
I illustrate here.

2 Setting up a working directory

With Subversion, you are almost always working on a copy of something in the repository. Only
when you commit your copy (usually with the command svn commit) does the repository get changed.
It is impossible to emphasize this too much—failing to commit changes (either by not issuing the
command at all or by failing to notice error messages when you do) is the root of most evil that
befalls beginning Subversion users.

In particular, a working directory is a copy of some directory in the repository. I suggest that
you set up such a directory under your account. In what follows, I’ll assume this directory’s name
is mywork (any name will do) and that it is in your home directory. I’ll also assume that your class
login is cs164-yu (I need your login because that’s the name of the part of the class repository that
you’re allowed to change). You can create this directory with the following sequence of commands:

$ cd # Go to your home directory

$ svn checkout svn+ssh://cs164-ta@torus.cs.berkeley.edu/cs164-yu mywork

Checked out revision 101

The part that begins “svn+ssh:” is the URL (Universal Resource Locator) for a part of the repos-
itory. It identifies the protocol for communicating (svn+ssh), the account that actually owns the
repository files (cs164-ta), a host machine for those files, the directory containing the repository
(well, actually, we’ve set that up to be implicit in our case) and a subdirectory of the repository
(cs164-yu). Subversion will create directory mywork if needed, and will add to it a hidden direc-
tory called mywork/.svn. Basically, you’ll never have to worry about these .svn directories; they

Using Subversion 3

contain administrative information that Subversion leaves around for itself for use in later com-
mands, rather like the “cookies” that remote websites are always storing on your disk so that they
remember who you are when next you talk to them.

You would soon get heartily tired of typing “svn+ssh://cs164-...,” but fortunately, you have
two things working for you:

• Once you have set up a working directory, the hidden .svn contains the information about the
repository’s URL (the svn info command will show it to you. Therefore, you will not have to
use the full URL too often.

• Feeling your pain, we have used the marvelous facilities provided by modern operating system
command processors to define shorthand notation. Specifically, on the instructional machines,
we have defined $MYREPOS to be short for

svn+ssh://cs164-ta@torus.cs.berkeley.edu/cs164-yu,

so that the command to create your mywork directory is simply

svn co $MYREPOS mywork

The part of the repository that you own is the subdirectory cs164-yu. We’ve set this up for you
so that it contains one (initially empty) subdirectory called tags, which is the traditional name for
the directory where you copy specific, named, versions of a project you are developing. In real life,
you might use the tags directories to hold releases of your software. In this class, you’ll use it to put
versions that you hand in. We can read the entire repository (we own it, after all), and so we will see
everything you put in your tags directory and automatically treat it as something you’ve handed in.

The staff keeps a subdirectory of the repository containing its publicly available files (such as
the skeleton we provide for homeworks and projects). For example, the skeleton for project #2 is
named svn+ssh://cs164-ta@torus.cs.berkeley.edu/staff/proj2. Again, we have a shorthand:
$STAFFREPOS/lab2.

Finally, all members of your team will have access to a team directory in the repository, named for
your team under the URL svn+ssh://cs164-ta@torus.cs.berkeley.edu/TEAM, where TEAM is
the name of your team. For this, the shorthand is $TEAMREPOS. You can set up a working directory
for this just as you did for your own personal work:

svn co $TEAMREPOS ~/teamwork

This is a working directory—a copy of the repository directory with your own changes. When a
teammate changes the repository, your working directory will not change until you specifically pull
in the updates, as we’ll discuss.

3 Starting a project

Suppose that you’ve just started work on some files for homework #2, and have placed them in
the subdirectory mywork/hw2 (I’m assuming that you’ve created mywork as in §2. We’ll call the
hw2 directory in the repository the trunk version of hw2—the one you do development on. Your
submissions will be snapshots of this directory. In other “real-life” uses of Subversion, you’ll see
these trunk directories stored in subdirectories named trunk, but we won’t bother with that here.

At the moment, Subversion knows nothing about these files. You can see this by running the
status subcommand:

Using Subversion 4

$ cd ~/mywork

$ ls

hw1

hw2

$ svn status

? hw2

which means “I see this directory called hw2, but it does not seem to taken from the repository that
this working directory (mywork) came from.” Because hw1 and everything in it are up-to-date, svn
status says nothing about it. As soon as possible, you should put all the files in hw2 under version
control with the add subcommand, which might produce the following output:

$ cd ~/mywork

$ svn add hw2

A hw2

A hw2/hw2.txt

A hw2/prob1

A hw2/prob1.y

The repository has not changed, but now the Subversion client knows that you intend for all these
files to eventually be part of the repository, as you’ll see if you check the status:

$ svn status

A hw2

A hw2/hw2.txt

A hw2/prob1

A hw2/prob1.c

A hw2/prob1.y

Additionally, svn add has modified the working directory hw2 by adding an .svn directory, turning
it into official working directories.

If you’d been working on it before this step, your directory might contain files such as hw2.txt~
(an Emacs back-up file) or prob1.o (the result of compilation), which you probably do not need to
archive (they are either useless or reconstructable). On the instructional machines, we’ve configured
your version of the client to ignore these and several other files. For those of you who want to set up
Subversion clients at home, take a look at the contents of the file ~/.subversion/config to see
what we did (look for ‘global-ignores’). On the other hand, in the example above, it happens that
the files prob1 and prob1.c should not be archived either (they are generated automatically from
prob1.y. At this point, you can remove them from version control:

$ svn revert hw2/prob1.c hw2/prob1

which undoes any changes we’ve made to these files since last creating a version (in this case, it
“unadds” them).

The procedure I’ve outlined so far assumes that you start from scratch with your own files. If we
have provided a skeleton, you can use it by first copying the skeleton into a working directory, like
this:

$ cd ~/mywork

$ svn copy $STAFFREPOS/hw2 hw2

A hw2

(As described previously, $STAFFREPOS is a shorthand defined on the instructional machines. The
full command is

Using Subversion 5

$ svn copy svn+ssh://cs164-ta@torus.cs.berkeley.edu/staff/hw2 hw2

which should work for you on systems other than the instructional computers.) You now will have a
directory named ~/mywork/hw2 with the same files that we ended up with originally.

So far, you’ve worked exclusively with your working files. The repository has not changed at all.
If you were to erase your files at this point, everything you’ve done would be lost permanently. So
now it’s time to record all the changes you’ve made (specifically, these files and directories you’ve
added) in the repository. As I said above, this is called committing the changes:

$ cd ~/mywork/hw2

$ svn commit -m ’Start homework #2’

... various messages
Committed revision 1294.

$ svn update

At revision 1294.

Each version has a unique revision number. Because of how we’ve arranged the CS164 repository,
the revision number will reflect the total number of versions created by all members of the class, even
though their versions have no impact on yours. In this course, you’ll probably always want to add
that final svn update command, as we did above, so that your working directory and the repository
are completely in sync. Let’s not go into an explanation of why Subversion’s designers made this
step optional just now.

Subversion requires that each version have a log message attached to it, which in this case
you’ve supplied with the -m option. For other changes, your log messages should be rather more
substantial than this. You can also take them from a file:

$ svn commit -F my-commit-notes

$ svn update

Both of these alternatives have problems. The -F option is somewhat inconvenient, and -m encourages
cryptic and uninformative error messages. If you don’t supply either, Subversion will try to invoke
your favorite editor. By default, we’ve set up the class accounts to make that editor be emacsclient
or emacs. This means that if you don’t already have a running Emacs, you’ll suddenly get one,
displaying a buffer in which to compose a log message (save the message and exit when done). If
you do have a running Emacs, it will sprout a new buffer for the log mesage (in this case, finish the
message with the C-x# command).

Suppose that at this point, some malicious gremlin executes

$ rm -rf ~/mywork

You can get it all back with

$ svn checkout $MYREPOS ~/mywork

4 The typical work cycle

At this point, you enter the usual cycle of adding and editing files, compiling, and debugging. Sub-

version will notice any files you change the next time you commit your changes, without any other
action by you. Each time you introduce a new source file, tell Subversion about it:

$ svn add prob2.y

A prob2.y

Using Subversion 6

Occasionally, you’ll need to delete a file that you previously committed:

$ svn delete garbage.c

D garbage.c

or rename it:

$ svn move garbage.c trash.c

A garbage.c

D trash.c

In these last two cases, Subversion will remove or move (rename) your working files appropriately
and make a note to itself of these actions for the next commit operation. Neither editing, adding,
removing, nor moving a working file has any effect on the repository, which remains unchanged until
you commit your changes:

$ svn commit -m "Add problem 2 solution rename garbage=>trash"

...

Committed revision 1301.

$ svn update

In other words, revision 1301 now contains a snapshot of all the files in the current directory (or its
subdirectories) that have changed since you last committed them, minus those you have removed,
plus those you have added.

Feel free to commit frequently, whenever you think you’ve finished working on a file, or finished a
minor change, or just feel like knocking off or going to lunch. You will not be wasting space because
Subversion stores only changes (or deltas) from one commit operation to the next.

You may find yourself wanting to work both from your home computer and your instructional
account. Subversion will help keep you synchronized. If, for example, you’ve been working from
home, the command

$ svn update

...

Updated to revision 1350.

issued from within a working directory on the instructional machines, will bring your latest commit
into that working directory. Be careful, though: if you haven’t been careful to commit your changes
at home, you won’t get your most recent work. Likewise, if you did not commit the last changes you
made in your instructional account (so that the working files have changes that are not reflected in
the repository), you’ll get messages about how those changes have been “merged” with the changes
you committed from home. Your working copy will still be out of sync with the repository, and you
may want to do a commit right away.

5 Comparing

One of the advantages to keeping around history is that you can see what you’ve done and recover
what you’ve lost. After you’ve done some editing on your files, you can compare them with previous
versions. To see what changes you’ve made to file prob2.y since you committed your changes:

svn diff prob2.y

You’ll get a listing that looks something like this:

Using Subversion 7

Index: prob2.y

===

--- f2 (revision 1350)

+++ f2 (working copy)

@@ -1,3 +1,5 @@

-/* Problem 2 */

+/* Problem #2 */

+

+%token NUM

%token ID

@@ -6,4 +8,5 @@

int N;

string v;

+FILE* inp;

for (int i = 0; i < N; i += 1) {

The ‘+’s indicate lines added in your working copy; the ‘-’s indicate lines removed in your working
copy; and the other lines indicate unchanged lines of context. The remaining lines give the line
numbers of these changes in the two different versions.

To see all changes to all files, just leave off any file names:

$ svn diff

Index: prob2.y

...

Index: trash.c

...

You can also compare your working files to previous revisions by number, as in

$ svn diff -r 1294

...

or compare two committed revisions of the current directory, as in

$ svn diff -r 1294:1300

Of course, revision numbers are not the easiest things to deal with, so there are other options for
specifying differences. To find the differences between the current working copy and what you had
at 1PM, you can write

$ svn diff -r {13:00}

or between the current working copy and noon on the 25th of October:

$ svn diff -r "{2007-10-25 12:00}" # You need quotes because of the space

or between the version you last checked out to or committed from the working directory (BASE),
ignoring any uncommitted changes to the working file since then, and the version of the file before it
last changed in the repository (PREV):

$ svn diff -r PREV:BASE prob2.y

Using Subversion 8

Very often, you’re simply interested in knowing what files you’ve changed in the working directory
and not committed yet. Use the ‘status’ command for this purpose:

$ svn status

M prob1.y

A prob2.y

A doc

A doc/Manual

D junk

This lists changes with a flag indicating modified files (M), added files (A), and deleted files (D).

6 Retrieving previous versions

Suppose you’ve modified prob2.y, have not committed it, but have decided that you’ve really messed
it up and should simply roll back to the version you committed. This is particularly easy:

$ svn revert prob2.y

Reverted ’prob2.y’

You can get fancier. Suppose that after committing prob2.y, you have second thoughts, and
want to fall back to the previous version of prob2.y. Here’s a simple way to do so:

$ svn commit

...

Committed revision 1522.

$ svn update

At revision 1522.

$ svn status

$ svn cat -r PREV prob2.y > prob2.y

$ svn status

M prob2.y

$ svn diff -r PREV prob2.y

No output

The cat command, like the similarly named command in Unix, lists file contents from the repository.
The ”> prob2.y” here is Unix notation for “send the standard output of this command to prob2.y.”
Thus, the command overwrites prob2.y with revision PREV—the version before the last that was
checked in. The repository is not changed yet; the status commands in this example show that
prob2.y has been modified from the last committed version. You will have to commit this change
to make it permanent.

The problem with this particular technique (less important in this class, but you might as well get
exposed to real-world considerations) is that it messes up the historical information that Subversion

keeps around. The log command in Subversion lists all the changes that a given file or directory
has undergone. With the short method above, all you’ll be told is that the file committed in 1522 is
somehow different from that in later revisions, rather than being told that the later revision is the
same as that in revision 1521. So I can get a little fancy and recover the previous version in two
steps:

$ svn delete prob2.y

...

$ svn copy -r 1521 $MYREPOS/hw2/prob2.y .

Using Subversion 9

(don’t forget the dot on the end, meaning “current directory”). At this point, svn status will show

R + prob2.y

meaning that you have replaced prob2.y with a new file (‘R’) and that this replacement has some
history that the log will reflect (‘+’). Now when you next commit, you’ll have the version of prob2.y
as of 1521 and the log will say so.

7 URLs and paths

At this point, you’ve seen two different syntaxes for denoting a file or directory. Just plain Unix
paths or Windows file names:

svn delete Main.java

and entire URLs (Universal Resource Locators, just as in your browsers):

svn checkout svn+ssh://cs164-ta@torus.cs.berkeley.edu/cs164-yu/proj1 ~/mywork/proj1

or
svn checkout $MYREPOS/proj1 ~/mywork/proj1

Plain file names generally refer to working files (files in your directories); URLs refer to files in
the repository. As you can see, URLs are rather tedious to write, which is why Subversion uses
those .svn directories to keep track of administrative details, including the original URL, allowing
commands to be much shorter.

Sometimes, however, you really need to reference a file or directory in the repository. The checkout
command and copy commands illustrated previously are two examples. Another very important one
is producing a copy of a directory in the repository itself. Suppose that you’ve completed work on
Homework #2 and are ready to submit it. Suppose, in fact, that you’ve just finished committing your
final version, which you keep in working directory ~/mywork/hw2. In this class, we’ve established the
convention that all submissions go in a subdirectory called tags of your repository. The command
to submit is

$ svn copy $MYREPOS/hw2 $MYREPOS/tags/hw2-1 -m "Homework 2, first submission"

Committed revision 1600.

This does not change your working directory, but it causes the entire directory tree hw2 in the
repository to get copied as a new subdirectory tags/hw2-1 in the repository. Any future changes
to proj1 either in your working files or in the repository have no effect on this copy. If you have a
reason later to resubmit, just use the same command, but with a slight modification to distinguish
submissions:

$ svn copy $MYREPOS/hw2 $MYREPOS/tags/hw2-2 -m "Homework 2, second submission"

Committed revision 1701.

This particular application of svn copy is an example of tagging , and you might refer to the copy in
directory tags as a release of your project.

In order to encourage disciplined use of Subversion, we’ve configured the repository to refuse
submissions by other means, such as by creating and committing a directory under tags as if it were
part of the trunk.

Using Subversion 10

8 Merging

By far the most complex part of the version-control process is the process of merging: combining
independent changes to a file. The main problem is that there is no automatic way to do it; at some
point, a human must intervene to resolve conflicting changes. Subversion’s facilities here are rather
primitive as these things go, but for our limited purposes, they will probably suffice. Suppose that
you have started homework #2 from some skeleton files I gave you and I later change the skeleton.
Assuming you want to take advantage of my changes, you’ll want to perform some kind of merge.

In general, each time I change files that I expect you to modify, I will tag the resulting directory, as
described above. So, for example, I will keep the current version of the initial files for Homework #2
in the repository directory .../staff/hw2, and snapshots of each “released” version of the files in
directories .../staff/hw2-1, .../staff/hw2-1, etc., with the highest-numbered tag being a copy
of .../staff/hw2.

Let’s assume that there are two tags for Homework #2, hw2-1 and hw2-2, and that when you
copied the public version, hw2-1 was the version you copied. Now that hw2-2 is out, you want to
incorporate its changes. First, commit your current trunk version (this is a safety measure that gives
you a convenient way to undo the merge if it gets fouled up somehow). Now merge in the changes
between hw2-1 and the current trunk version like this:

$ cd ~/mywork/hw2

$ svn merge $STAFFREPOS/hw2-1 $STAFFREPOS/hw2

U prob1.y

C prob2.y

The merge operation modifies your working directory only; the repository is not changed. The
message tells you that prob1.y has been updated with changes that occurred between hw2-1 and
hw2, and that prob2.y has also been updated, but there were some conflicts—changes between hw2-1

and the trunk that overlap changes you made since hw2-1. These conflicts are marked in prob2.y

like this:

<<<<<<< .working

printf ("Hello, world!\n");

initialize ();

=======

initialize (args);

>>>>>>> .merge-right.r1009

The lines between ”<<<<<<< .working and ======= are from your working version of the file
prob2.y, and the ones below ======= up to the >>>>>>>... line are from hw2-2. In this case,
hw2-1 probably contained initialize (); and you added a printf call, while the hw2-2 tag added
an argument to the call to initialize. Subversion decided that was close enough to the new
hw2’s change to suggest an overlap, and so has asked you to fix the problem. Simply edit the file
appropriately. In this case you probably want

System.out.println ("Welcome to my project");

initialize (args);

Now tell Subversion that the problem is solved with the command

$ svn resolved prob2.y

Resolved conflicted state of ’prob2.y’

Finally, when all conflicts are resolved, commit your merge just as you would any change to your
files.

Using Subversion 11

9 Working with Teams

For projects, your team will also have a directory in the repository, as indicated in §2. The commands
are analogous, but we suggest that you put the work under a different working directory, which we’ve
been calling teamwork, created with the command:

svn co $TEAMREPOS ~/teamwork

You can now create subdirectories such as proj1, just as you did for homework, with commands such
as

$ cd teamwork

$ svn copy $STAFFREPOS/proj1 proj1

...

$ svn commit proj1 -m "Start project 1"

If one of your partners has done this already, you can get a working copy of this work by typing
instead

$ cd teamwork

$ svn update proj1

This command will bring in any directories in your team repository that others have committed.
Unfortunately, things get confusing if two partners independently try to initialize the project (with

svn copy, say). In that case, the second partner will get error messages when trying to commit his
proj1 working directory. To fix the problem, the second partner can undo his work with

$ cd ~/teamwork

$ # Tell svn to forget about proj1

$ svn revert --recursive proj1

$ # Get rid of the proj1 files in the working directory

$ rm -rf proj1

$ # Now get the partner’s version

$ svn update proj1

From here, you might work in the team repository directly, with a cycle like this:

$ cd proj1

edit, add, remove files
$ svn commit

$ svn update

edit, add, remove files
$ svn commit

$ svn update

...

Each svn update will bring in and attempt to merge any work that your partners have committed.
Occasionally, a partner will have committed a file you’ve been modifying, in which case svn commit

will ask you to svn update first to merge in those changes and resolve conflicts.
As for homework assignments, teams will submit versions by copying to the tags directory:

$ cd teamwork

$ svn commit proj1

$ svn copy $TEAMREPOS/proj1 $TEAMREPOS/tags/proj1-1 -m "Submit version 1"

Using Subversion 12

9.1 Working in a branch

Of course, working like this can cause problems with the partners stepping on each others’ toes and
causing merge conflicts. Therefore a somewhat better way to work is to modify your own branch of
the project. For example, you might do the following in your personal working directory:

$ cd mywork

$ svn copy $TEAMREPOS/proj1 $MYREPOS/proj1.0 -m "Record branching point"

$ svn copy $MYREPOS/proj1.0 $MYREPOS/proj1-sync \

-m "Record last time I synced with the team"

$ svn copy $MYREPOS/proj1.0 proj1

$ svn commit proj1

and then work on your piece of the project in mywork/proj1 rather than teamwork/proj1, so that
your partners will never cause any conflicts. The reason for keeping an extra copy of the team project
you started with in $MYREPOS/proj1.0 around will be clear in a bit.

Every now and then, you’ll want to pull in changes that your partners have made to the team
version. You do this by merging changes like this:

$ cd ~/mywork/proj1

$ svn commit # Always commit before merging.

$ svn update # ... and sync with the repository.

$ svn copy $TEAMREPOS/proj1 $MYREPOS/proj1-next -m "Record next sync point"

$ svn merge $MYREPOS/proj1-sync $MYREPOS/proj1-next

resolve any conflicts
$ svn commit

...

$ svn update

This procedure will fetch any changes in the team version into your own personal branch without
modifying the team’s repository. It also records (in $MYREPOS/proj1.1, the precise version of the
team’s repository that you last merged. To set things up so that you can use the same procedure
next time, finish up with

svn remove $MYREPOS/proj1-sync -m "Remove old sync point"

svn move $MYREPOS/proj1-next $MYREPOS/proj1-sync -m "And record new sync point"

When you are satisfied that your work on the project is ready to include in the team’s version,
apply the same process in reverse.

$ cd ~/mywork

$ svn commit proj1 # Always commit stuff first!

$ cd ~/teamwork/proj1

$ svn update

$ # Merge changes since the last time we merged into the team project.

$ svn merge $MYREPOS/proj1.0 $MYREPOS/proj1

resolve any conflicts
$ svn commit

$ cd ~/mywork

$ svn remove $MYREPOS/proj1.0 $MYREPOS/proj1 $MYREPOS/proj1-sync -m "Remove our branch"

$ svn update

Now we’ve merged our work into the team’s directory and removed our branch. We can now start
the whole cycle over again.

Using Subversion 13

10 Miscellaneous

Ignoring files. One problem with svn status and svn add is that there will often be files that
you do not want svn to track, but that both of these commands will report or process by default.
We already mentioned that we have set up the defaults in your instructional accounts to ignore
certain generated files such as parser.y~ or parser.o, based on their file-name suffixes. Sometimes,
however, these default rules can’t cover everything. For example, in one of our skeletons, a source
file named parser.y is used as input to a program that generates a C++ file parser.cc, which is
eventually linked into an executable file named apyc. We don’t want to ignore all C++ source files,
needless to say, and the name apyc has nothing in particular to distinguish it.

To deal with this and other problems, Subversion provides a way of associating properties with
archived files and directories. Each versioned item can have any number of named properties, each
with a given string value. For the current problem, there is a property applied to directories called
svn:ignore, whose value is a string containing “glob patterns” (Unix file-name patterns) of filenames
to be ignored in that directory (only in that directory; the property does not apply to subdirectories).
The command

$ svn propedit svn:ignore DIR

will invoke your favorite editor (as for a log message) and allow you to compose a list of ignored files.
For this example, such a list might be

parser.cc

apyc

*.out

The last line calls for ignoring all files in the directory DIR that end in out (just to show how
patterns work). When you finish creating this list and exit, Subversion will apply this property to
the directory DIR, and it will get saved in the repository as well when next you commit.

Depth of updates. The particular structure we’ve used for your directories this semester has a
drawback. If you execute

$ cd ~/mywork

$ svn update

you’ll not only update any working directories you currently have, but also the tags directory, which
will cause you to download copies of all the tags you’ve committed. In general, you don’t want that,
since by convention, you don’t change tagged data. To avoid the problem, use the command

$ cd ~/mywork

$ svn update --set-depth=empty tags

This will set your tags working directory (it does not affect the repository) so that future svn

updates do not check out the subdirectories of tags.

11 Quick guide

Here are some common version-control tasks and the Subversion commands that perform them. In
all of the following, I’ll assume that

• Your class account is cs164-yu.

Using Subversion 14

• You having chosen to keep working copies of your directories in directory ~/mywork.

• You use the naming scheme described above, with one subdirectory per assignment.

We’ll use “change directory” (cd) commands in these examples just to make clear what directory
we’re in. Many of these will be redundant.

Set up your working directories ~/mywork and ~/teamwork:

$ svn checkout $MYREPOS ~/mywork

$ svn checkout $TEAMREPOS ~/teamwork

Create a directory for a new assignment:

$ cd ~/mywork

$ svn mkdir hw2

$ svn commit hw2 -m "Set up Homework 2"

$ svn update

You’d put your work in ~/mywork/hw2.

Create a directory for a new assignment from our template:

$ cd ~/mywork

$ svn copy $STAFFREPOS/hw2 hw2

$ svn commit hw2 -m "Set up homework 2"

$ svn update

Tell Subversion about a new file:

$ cd ~/mywork/hw2

create prob2.y

$ svn add prob2.y

This command does not change the repository. You still have to commit the change.

Tell Subversion about a whole new subdirectory:

$ cd ~/teamwork/proj1

create directory include and files include/arith.h and util/tree.h

$ svn add util

This command does not change the repository. You still have to commit the change.

Delete a committed file or directory:

$ cd ~/teamwork/proj1

$ svn del junk.c

D junk.c

$ svn del util

D util/tree.c

D util/bark.c

D util

Using Subversion 15

These change only your working directory. You must commit in order to change the repository.

Get a brief summary of changes since the last commit:

$ cd ~/teamwork/proj1

$ svn status

M include/tree.h

A include/bark.h

Commit changes:

$ cd ~/teamwork/proj1

$ svn commit -m "Log message"

various messages

Committed revision 2000.

$ svn update

This transmits all additions, deletions, renamings, and changes to version-controlled files in your
working directory to the repository, and creates a new revision that contains them. Leave off the
-m "Log message" to get Subversion to use a text editor to compose the message.

Compare your current working files against the repository: To compare against the most
recently committed version:

$ cd ~/teamwork/proj1

$ svn diff

Against another version by revision number:

$ svn diff -r 1756

Against another version in the repository by time:

$ svn diff -r ’{13:00}’

Against another version in the repository by time and date:

$ svn diff -r ’{2007-10-17 13:00}’

Compare a particular working file with the repository:

$ svn diff main.c

You can also use ‘-r’ here to look at previous versions of the file in the repository.

Merge corrections in our template into your trunk: First commit the trunk directory. Let’s
assume that you started from the initial release of the skeleton, which will be called proj1-1, and
want to merge in the changes we’ve made to proj1-2.

$ cd ~/mywork/proj1

$ svn merge $STAFFREPOS/proj1-1 $STAFFREPOS/proj1

U main.cc

C parser.y

Edit any files marked C to resolve clashes
$ svn resolved parser.y # Tell svn about resolution

...

$ svn commit -m "Merged in skeleton changes between v1 and v2"

Committed revision 2009.

Using Subversion 16

Submit a copy of your trunk: First, make sure your work is committed:

$ cd myteam/proj1

$ svn commit -m "Project 1, ready to submit"

Committed revision 2010.

$ svn update

and now create a submission copy:

$ svn copy $MYREPOS/proj1 $MYREPOS/tags/proj1-1 -m "Project 1, first submission"

Committed revision 2011.

Follow the same procedure for additional submissions of the same project, changing proj1-1 to
proj1-2, etc.

Find out what you have submitted: To find out what submissions are actually in the repository
(as opposed to merely sitting, uncommitted, in your working directory), use one of

$ svn ls $MYREPOS/tags

$ svn ls $TEAMREPOS/tags

as appropriate. A slight variation of this command lists all the files (not just the top-level directories):

$ svn ls -R $TEAMREPOS/tags

although you will probably want to restrict this to a single submission:

$ svn ls -R $TEAMREPOS/tags/proj1-1

Of course, you can see what you actually submitted by just checking it out (I suggest doing so
someplace other than mywork or teamwork, to avoid confusion):

svn co $TEAMREPOS/tags/proj1-1 DIR

where DIR is a new directory name.

	Introduction
	Setting up a working directory
	Starting a project
	The typical work cycle
	Comparing
	Retrieving previous versions
	URLs and paths
	Merging
	Working with Teams
	Working in a branch

	Miscellaneous
	Quick guide

