Lecture 10: General and Bottom-Up Parsing

Job Opportunity. Professor Keltner of the Psychology Department is looking for a web developer to help with a moodle system (CMS). There are options for a stipend, and if the project is completed on schedule the developer's work will be shown on a TEDx presentation. See Piazzza for more details.

A Little Notation

Here and in lectures to follow, we'll often have to refer to general productions or derivations. In these, we'll use various alphabets to mean various things:

- Capital roman letters are nonterminals (A, B, \ldots).
- Lower-case roman letters are terminals (or tokens, characters, etc.)
- Lower-case greek letters are sequences of zero or more terminal and nonterminal symbols, such as appear in sentential forms or on the right sides of productions (α, β, \ldots).
- Subscripts on lower-case greek letters indicate individual symbols within them, so $\alpha=\alpha_{1} \alpha_{n} \ldots \alpha_{n}$ and each α_{i} is a single terminal or nonterminal.
For example,
- A : α might describe the production $\mathrm{e}: \mathrm{e}^{\text {' }+ \text { ' }} \mathrm{t}$,
- $B \Rightarrow \alpha A \gamma \Rightarrow \alpha \beta \gamma$ might describe the derivation steps $\mathrm{e} \Rightarrow \mathrm{e}^{\text {' }}$ ' t $\Rightarrow \mathrm{e}^{\prime+}{ }^{\prime}$ ID (α is $\mathrm{e}^{\prime+}{ }^{+}$; A is $\mathrm{t} ; B$ is e ; and γ is empty.)

Last modified: Wed Feb 16 10:38:52 2011
CS164: Lecture \#10 2

Abstract body of parse(A, S)

- Can formulate top-down parsing analogously to NFAs.

```
parse (A, S):
```

"""Assuming A is a nonterminal and $\mathrm{S}=c_{1} c_{2} \ldots c_{n}$ is a string, return

$$
\text { integer } k \text { such that } \mathrm{A} \text { can derive the prefix string } c_{1} \ldots c_{k} \text { of } \mathrm{S} . " \mathrm{"N}
$$

Choose production 'A: $\alpha_{1} \alpha_{2} \cdots \alpha_{m}$ ' for A (nondeterministically)
$\mathrm{k}=0$
for x in $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$:
if x is a terminal:
if $\mathrm{x}=c_{k+1}$:
$\mathrm{k}+=1$
else:
GIVE UP
else:
$\mathrm{k}+=\operatorname{parse}\left(\mathrm{x}, c_{k+1} \cdots c_{n}\right)$
return k

- Assume that the grammar contains one production for the start symbol: p: $\gamma \dashv$.
- We'll say that a call to parse returns a value if some set of choices for productions (the blue step) would return a value (just like NFA).
- Then if parse (p, S) returns a value, S must be in the language.

Last modified: Wed Feb 16 10:38:52 2011

Example

Consider parsing S="ID*ID-1" with a grammar from last time:

```
\(p: e^{\prime-1}\) Afsuliagssfth phthuthinoutghpthegnengram:
e : t
    | e '/' t
    | \(e^{\prime *}{ }^{\prime} t\)
t : ID

\section*{Afsukiagssatih pathutginoutghpthegpenegram:}
```

parse (p, S):

```
parse (p, S ):
parsen(p, S):
```

```
parsen(p, S):
```

```


```

```
        parse (e, S\()\) : :
Choose : e : \({ }^{\prime} \mathrm{t}\) :
```

```
```

```
        parse (e, S\()\) : :
Choose : e : \({ }^{\prime} \mathrm{t}\) :
```

```




```

```
                            check Shose \(\overline{\text { th }}=\) IPD: OK , so \(\mathrm{k}_{3}+=1\);
```

```
```

```
                            check Shose \(\overline{\text { th }}=\) IPD: OK , so \(\mathrm{k}_{3}+=1\);
```

```


```

```
                return \(1_{\text {return }}\) (and \(\left(\right.\) so \(\left.\left.k_{k_{1}}\right)+=1\right)\)
```

```
```

```
                return \(1_{\text {return }}\) (and \(\left(\right.\) so \(\left.\left.k_{k_{1}}\right)+=1\right)\)
```

```


```

```
            parse(t, \(\mathrm{S}_{3}\) ): \# \(\mathrm{S}_{3}==\) "ID ل"
```

```
            parse(t, \(\mathrm{S}_{3}\) ): \# \(\mathrm{S}_{3}==\) "ID ل"
                choose t : ID:
                choose t : ID:
                    check \(\mathrm{S}_{3}\left[\mathrm{k}_{3}+1\right]==\mathrm{S}_{3}[1]==\mathrm{ID}\); OK
                    check \(\mathrm{S}_{3}\left[\mathrm{k}_{3}+1\right]==\mathrm{S}_{3}[1]==\mathrm{ID}\); OK
                    \(\mathrm{k}_{3}+=1\); return 1 (so \(\mathrm{k}_{2}+=1\) )
                    \(\mathrm{k}_{3}+=1\); return 1 (so \(\mathrm{k}_{2}+=1\) )
                    return 3
```

```
                    return 3
```

```
                            Check \(\mathrm{S}\left[\mathrm{k}_{1}+1\right]=\mathrm{S}[4]==\) ' \(\dagger\) ': OK
            \(\mathrm{k}_{1}+=1\); return 4
\(\mathrm{k}_{i}\) means "the variable \(k\) in the call to parse that is nested \(i\) deep." Outermost \(k\) is \(k_{1}\). Likewise for S.
Consider parsing S="ID*ID-1" with a grammar from last time:

\section*{Making a Deterministic Algorithm}
- If we had an infinite supply of processors, could just spawn new ones at each "Choose" line.
- Some would give up, some loop forever, but on correct programs, at least one processor would get through.
- To do this for real (say with one processor), need to keep track of all possibilities systematically.
- This is the idea behind Earley's algorithm:
- Handles any context-free grammar.
- Finds all parses of any string.
- Can recognize or reject strings in \(O\left(N^{3}\right)\) time for ambiguous grammars, \(O\left(N^{2}\right)\) time for "nondeterministic grammars", or \(O(N)\) time for deterministic grammars (such as accepted by Bison).

\section*{Earley's Algorithm: I}
- First, reformulate to use recursion instead of looping. Assume the string \(S=c_{1} \cdots c_{n}\) is fixed.
- Redefine parse:
parse ( \(\mathrm{A}: \alpha \bullet \beta, \mathrm{s}, \mathrm{k})\) :
"""Assumes A: \(\alpha \beta\) is a production in the grammar, \(0<=\mathrm{s}<=\mathrm{k}<=\mathrm{n}\), and \(\alpha\) can produce the string \(c_{s+1} \cdots c_{k}\). Returns integer j such that \(\beta\) can produce \(c_{k+1} \cdots c_{j}\)."""
- Or diagrammatically, parse returns an integer \(j\) such that:
\[
c_{1} \cdots c_{s} \underbrace{c_{s+1} \cdots c_{k}}_{\alpha \stackrel{*}{\Rightarrow}} \underbrace{c_{k+1} \cdots c_{j}}_{\beta \stackrel{*}{\Longrightarrow}} c_{j+1} \cdots c_{n}
\]

\section*{Earley's Algorithm: II}
parse (A: \(\alpha \bullet \beta, \mathbf{s}, \mathrm{k})\) :
"""Assumes A: \(\alpha \beta\) is a production in the grammar,
\(0<=\mathrm{s}<=\mathrm{k}<=\mathrm{n}\), and \(\alpha\) can produce the string \(c_{s+1} \cdots c_{k}\). Returns integer \(j\) such that \(\beta\) can produce \(c_{k+1} \cdots c_{j}\)."""
if \(\beta\) is empty: return k
Assume \(\beta\) has the form \(x \delta\)
if \(x\) is a terminal: if \(x==c_{k+1}\) : return parse(A: \(\alpha x \bullet \delta, \mathrm{~s}, \mathrm{k}+1\) ) else:

GIVE UP
else:
Choose production ' \(x: \kappa\) ' for \(x\) (nondeterministically)
\(j=\operatorname{parse}(x: \bullet \kappa, k, k)\)
return parse (A: \(\alpha x \bullet \delta, \mathrm{~s}, \mathrm{j}\) )
- Now do all possible choices that result in such a way as to avoid redundant work ("nondeterministic memoization").

\section*{Chart Parsing}
- Idea is to build up a table (known as a chart) of all calls to parse that have been made.
- Only one entry in chart for each distinct triple of arguments (A: \(\alpha \bullet \beta, \boldsymbol{s}, \boldsymbol{k}\) ).
- We'll organize table in columns numbered by the \(k\) parameter, so that column \(k\) represents all calls that are looking at \(c_{k+1}\) in the input.
- Each column contains entries with the other two parameters: [A: \(\alpha \bullet \beta, \boldsymbol{s}\) ], which are called items.
- The columns, therefore, are item sets.

\section*{Example, completed}
- Last slide showed only those items that survive and get used. Algorithm actually computes dead ends as well (unlettered, in red).


\section*{Example}

\section*{Grammar}
\(p: e^{\prime} \dashv^{\prime}\)
Input String
- I + I †
\(\mathrm{e}: \mathrm{s}\) I
\(\mathrm{s}:\)
:

Chart. Headings are values of \(k\) and \(c_{k+1}\) (raised symbols).
\[
\begin{aligned}
& \\
& \text { n.e: e '+' e•, } 0 \\
& \text { o. p: e•' } \dashv^{\prime}, 0
\end{aligned}
\]

Last modified: Wed Feb 16 10:38:52 2011

\section*{Adding Semantic Actions}
- Pretty much like recursive descent. The call parse (A: \(\alpha \bullet \beta\), \(\mathbf{s}, \mathrm{k}\) ) can return, in addition to \(j\), the semantic value of the A that matches characters \(c_{s+1} \cdots c_{j}\).
- This value is actually computed during calls of the form parse(A: \(\alpha^{\prime} \bullet\), \(s, k\) ) (i.e., where the \(\beta\) part is empty).
- Assume that we have attached these values to the nonterminals in \(\alpha\), so that they are available when computing the value for \(A\).

\section*{Ambiguity}
- Ambiguity only important here when computing semantic actions.
- Rather than being satisfied with a single path through the chart, we look at all paths.
- And we attach the set of possible results of parse (Y: • \(k, \mathrm{~s}, \mathrm{k}\) ) to the nonterminal \(Y\) in the algorithm.```

