
Lecture 15: Practical Bison: Error Handling, etc.

• One purpose of the parser is to filter out errors that show up in
parsing

• Later stages should not have to deal with possibility of malformed
constructs

• Parser must identify error so programmer knows what to correct

• Parser should recover so that processing can continue (and other
errors found).

• Parser might even correct error (e.g., PL/C compiler could “correct”
some Fortran programs into equivalent PL/1 programs!)

Last modified: Tue Feb 22 23:37:16 2011 CS164: Lecture #15 1

Identifying Errors

• All of the valid parsers we’ve seen identify syntax errors as soon as
possible.

• Valid prefix property: all the input that is shifted or scanned is the
beginning of some valid program. . .

• . . . But the rest of the input might not be.

• So in principle, deleting the lookahead (and subsequent symbols) and
inserting others will give a valid program.

Last modified: Tue Feb 22 23:37:16 2011 CS164: Lecture #15 2

Automating Recovery

• Unfortunately, best results require using semantic knowledge and
hand tuning.

– E.g., a(i].y = 5 might be turned to a[i].y = 5 if a is statically known
to be a list, or a(i).y = 5 if a function.

• Some automatic methods can do an OK job that at least allows
parser to catch more than one error.

Last modified: Tue Feb 22 23:37:16 2011 CS164: Lecture #15 3

Bison’s Technique

• The special terminal symbol error is never actually returned by the
lexer.

• Gets inserted by parser in place of erroneous tokens.

• Parsing then proceeds normally.

Last modified: Tue Feb 22 23:37:16 2011 CS164: Lecture #15 4



Example of Bison’s Error Rules

Suppose we want to throw away bad statements and carry on

stmt : whileStmt

| ifStmt

| ...

| error NEWLINE

;

Last modified: Tue Feb 22 23:37:16 2011 CS164: Lecture #15 5

Response to Error

• Consider erroneous text like

if x y: ...

• When parser gets to the y, will detect error.

• Then pops items off parsing stack until it finds a state that allows a
shift or reduction on ‘error’ terminal

• Does reductions, then shifts ‘error’.

• Finally, throws away input until it finds a symbol it can shift after
‘error’, according to the grammar.

Last modified: Tue Feb 22 23:37:16 2011 CS164: Lecture #15 6

Error Response, contd.

• So with our example:

stmt : whileStmt

| ifStmt

| ...

| error NEWLINE

;

We see ‘y’, throw away the ‘if x’, so as to be back to where a stmt
can start.

• Shift ‘error’ and throw away more symbols to NEWLINE. Then carry
on.

Last modified: Tue Feb 22 23:37:16 2011 CS164: Lecture #15 7

Of Course, It’s Not Perfect

• “Throw away and punt” is sometimes called “panic-mode error recov-
ery”

• Results are often annoying.

• For example, in our example, there could be an INDENT after the
NEWLINE, which doesn’t fit the grammar and causes another error.

• Bison compensates in this case by not reporting errors that are too
close together

• But in general, can get cascade of errors.

• Doing it right takes a lot of work.

Last modified: Tue Feb 22 23:37:16 2011 CS164: Lecture #15 8



Bison Examples

[See lecture15 directory.]

Last modified: Tue Feb 22 23:37:16 2011 CS164: Lecture #15 9


	Lecture 15: Practical Bison: Error Handling, etc.
	Identifying Errors
	Automating Recovery
	Bison's Technique
	Example of Bison's Error Rules
	Response to Error
	Error Response, contd.
	Of Course, It's Not Perfect
	Bison Examples

