
Lecture 16: Static Semantics Overview1

• Lexical analysis

– Produces tokens

– Detects & eliminates illegal tokens

• Parsing

– Produces trees

– Detects & eliminates ill-formed parse trees

• Static semantic analysis ⇐= we are here

– Produces decorated tree with additional information attached

– Detects & eliminates remaining static errors

1From material by R. Bodik and P. Hilfinger

Last modified: Mon Feb 28 18:09:45 2011 CS164: Lecture #16 1



Static vs. Dynamic

• We use the term static to describe properties that the compiler can
determine without considering any particular execution.

– E.g., in

def f(x) : x + 1

Both uses of x refer to same variable

• Dynamic properties are those that depend on particular executions
in general.

– E.g., will x = x/y cause an arithmetic exception?

• Actually, distinction is not that simple. E.g., after

x = 3

y = x + 2

compiler could deduce that x and y are integers.

• But languages often designed to require that we treat variables only
according to explicitly declared types, because deductions are dif-
ficult or impossible in general.

Last modified: Mon Feb 28 18:09:45 2011 CS164: Lecture #16 2



Typical Tasks of the Semantic Analyzer

• Find the declaration that defines each identifier instance

• Determine the static types of expressions

• Perform re-organizations of the AST that were inconvenient in parser,
or required semantic information

• Detect errors and fix to allow further processing

Last modified: Mon Feb 28 18:09:45 2011 CS164: Lecture #16 3



Typical Semantic Errors: Java, C++

• Multiple declarations: a variable should be declared (in the same
region) at most once

• Undeclared variable: a variable should not be used without being
declared.

• Type mismatch: e.g., type of the left-hand side of an assignment
should match the type of the right-hand side.

• Wrong arguments: methods should be called with the right number
and types of arguments.

• Definite-assignment check (Java): conservative check that simple
variables assigned to before use.

Last modified: Mon Feb 28 18:09:45 2011 CS164: Lecture #16 4



Output from Static Semantic Analysis

Input is AST; output is an annotated tree: identifiers decorated with
declarations, other expressions with type information.

x = 3

def f (x):

return x+y

y = 2

Id Type Nesting

#1: x, Any, 0

#2: f, Any->Any, 0

#3: x, Any, 1

#4: y, Any, 0

stmt list

=

x:#1 3:Int

def

f:#2 id list

x:#3

return

+:Any

x:#3 y:#4

=

y:#4 2:Int

Last modified: Mon Feb 28 18:09:45 2011 CS164: Lecture #16 5



Output from Static Semantic Analysis (II)

• Analysis has added objects we’ll call symbol entries to hold informa-
tion about instances of identifiers.

• In this example, #1: x, Any, 0 denotes an entry for something
named ‘x’ occurring at the outer lexical level (level 0) and having
static type Any.

• For other expressions, we annotate with static type information.

Last modified: Mon Feb 28 18:09:45 2011 CS164: Lecture #16 6



Output from Static Semantic Analysis: Classes

• In Python (dynamically typed), can write

class A(object):

def f(self): return self.x

a1 = A(); a2 = A() # Create two As

a1.x = 3; print a1.x # OK

print a2.x # Error; there is no x

so can’t say much about attributes (fields) of A.

• In Java, C, C++ (statically typed), analogous program is illegal, even
without second print (the class definition itself is illegal).

• So in statically typed languages, symbol entries for classes would
contain dictionaries mapping attribute names to types.

Last modified: Mon Feb 28 18:09:45 2011 CS164: Lecture #16 7



Scope Rules: Binding Names to Symbol Entries

• Scope of a declaration: section of text or program execution in
which declaration applies

• Declarative region: section of text or program execution that bounds
scopes of declarations (we’ll say “region” for short).

• If scope of a declaration defined entirely according to its position
in source text of a program, we say language is statically scoped.

• If scope of a declaration depends on what statements get executed
during a particular run of the program, we say language has dynami-
cally scoped.

Last modified: Mon Feb 28 18:09:45 2011 CS164: Lecture #16 8



Scope Rules: Name=⇒Declaration is Many-to-One

• In most languages, can declare the same name multiple times, if its
declarations

– occur in different declarative regions, or

– involve different kinds of names.

– Examples from Java?, C++?

Last modified: Mon Feb 28 18:09:45 2011 CS164: Lecture #16 9



Scope Rules: Nesting

• Most statically scoped languages (including C, C++, Java) use:

Algol scope rule: Where multiple declarations might apply,
choose the one defined in the innermost (most deeply nested)
declarative region.

• Often expressed as “inner declarations hide outer ones.”

• Variations on this: Java disallows attempts to hide local variables
and parameters.

Last modified: Mon Feb 28 18:09:45 2011 CS164: Lecture #16 10



Scope Rules: Declarative Regions

• Languages differ in their definitions of declarative regions.

• In Java, variable declaration’s effect stops at the closing ‘}’, that
is, each function body is a declarative region.

• What others?

• In Python, function header and body make up a declarative region,
as does a lambda expression. But nothing smaller. Just one x in this
program:

def f(x):

x = 3

L = [x for x in xrange(0,10)]

Last modified: Mon Feb 28 18:09:45 2011 CS164: Lecture #16 11



Scope Rules: Use Before Definition

• Languages have taken various decisions on where scopes start.

• In Java, C++, scope of a member (field or method) includes the en-
tire class (textual uses may precede declaration).

• But scope of a local variable starts at its declaration.

• As for non-member and class declarations in C++: must write

extern int f(int); // Forward declarations

class C;

int x = f(3) // Would be illegal w/o forward decls.

void g(C* x) {

...

}

int f (int x) { ... } // Full definitions

class C { ... }

Last modified: Mon Feb 28 18:09:45 2011 CS164: Lecture #16 12



Scope Rules: Overloading

• In Java or C++ (not Python or C), can use the same name for more
than one method, as long as the number or types of parameters are
unique.

int add(int a, int b); float add(float a, float b);

• The declaration applies to the signature—name + argument types—
not just name.

• But return type not part of signature, so this won’t work:

int add (int a, int b); float add (int a, int b)

• In Ada, it will, because the return type is part of signature.

Last modified: Mon Feb 28 18:09:45 2011 CS164: Lecture #16 13



Dynamic Scoping

• Original Lisp, APL, Snobol use dynamic scoping, rather than static:

Use of a variable refers to most recently executed, and
still active, declaration of that variable.

• Makes static determination of declaration generally impossible.

• Example:

void main() { f1(); f2(); }

void f1() { int x = 10; g(); }

void f2() { String x = "hello"; f3();g(); }

void f3() { double x = 30.5; }

void g() { print(x); }

• With static scoping, illegal.

• With dynamic scoping, prints “10” and “hello”

Last modified: Mon Feb 28 18:09:45 2011 CS164: Lecture #16 14



Explicit vs. Implicit Declaration

• Java, C++ require explicit declarations of things.

• C is lenient: if you write foo(3) with no declaration of foo in scope,
C will supply one.

• Python implicitly declares variables you assign to in a function to be
local variables.

• Fortran implicitly declares any variables you use, and gives them a
type depending on their first letter.

• But in all these cases, there is a declaration as far as the compiler
is concerned.

Last modified: Mon Feb 28 18:09:45 2011 CS164: Lecture #16 15



So How Do We Annotate with Declarations?

• Idea is to recursively navigate the AST,

– in effect executing the program in simplified fashion,

– extracting information that isn’t data dependent.

• You saw it in CS61A (sort of).

Last modified: Mon Feb 28 18:09:45 2011 CS164: Lecture #16 16



Environment Diagrams and Symbol Entries

• In Scheme, executing

(set! x 7)

(define (f x) (let ((y (+ x 39))) (+ x y)))

(f 3)

would eventually give this environment at (+ x y):

global
environment

x: 7
f: . . .

x: 3 y: 42
current
environment

• Now abstract away values in favor of static type info:

#1. x: Any
#2. f: Any→Any

#3. x: Any #4. y: Any

• and voila! A data structure for mapping names to current declara-
tions: a block-structured symbol table.

Last modified: Mon Feb 28 18:09:45 2011 CS164: Lecture #16 17


	Lecture 16: Static Semantics OverviewFrom material by R. Bodik and P. Hilfinger
	Static vs. Dynamic
	Typical Tasks of the Semantic Analyzer
	Typical Semantic Errors: Java, C++
	Output from Static Semantic Analysis
	Output from Static Semantic Analysis (II)
	Output from Static Semantic Analysis: Classes
	Scope Rules: Binding Names to Symbol Entries
	Scope Rules: Name=-3muDeclaration is Many-to-One
	Scope Rules: Nesting
	Scope Rules: Declarative Regions
	Scope Rules: Use Before Definition
	Scope Rules: Overloading
	Dynamic Scoping
	Explicit vs. Implicit Declaration
	So How Do We Annotate with Declarations?
	Environment Diagrams and Symbol Entries

