Type Inference

- In simple case:

```
fun add [] = 0
| add (a :: L) = a + add L
```

compiler deduces that add has type int list \rightarrow int.

- Uses facts that (a) 0 is an int, (b) [] and a: :L are lists (: : is cons), (c) + yields int.
- More interesting case:

```
fun count [] = 0
    | count (_ :: y) = 1 + count y
```

(_ means "don't care" or "wildcard"). In this case, compiler deduces that count has type α list \rightarrow int.

- Here, α is a type parameter (we say that count is polymorphic).
- Examples from the language ML:

```
fun map f [] = []
| map \(f(a:: \quad y)=(f a)::(m a p ~ f)\)
fun reduce \(f\) init [] = init
| reduce \(f\) init ( \(a:: y\) ) = reduce \(f(f\) init \(a) y\)
fun count [] = 0
| count (_ : : y) = \(1+\) count \(y\)
fun addt [] = 0
    addt \(((a,-, c):: y)=(a+c):: ~ a d d t y\)
```

- Despite lack of explicit types here, this language is statically typed!
- Compiler will reject the calls map 3 [1, 2] and reduce (op +) [] [3, 4, 5].
- Does this by deducing types from their uses.

Doing Type Inference

- Given a definition such as

```
fun add [] = 0
    | add (a :: L) = a + add L
```

- First give each named entity here an unbound type parameter as its type: add: $\alpha, a: \beta, L: \gamma$.
- Now use the type rules of the language to give types to everything and to relate the types:
- O: int, []: δ list.
- Since add is function and applies to int, must be that $\alpha=\iota \rightarrow \kappa$, and $\iota=\delta$ list
- etc.
- Gives us a large set of type equations, which can be solved to give types.
- Solving involves pattern matching, known formally as type unification.

Last modified: Thu Mar 17 16:11:44 2011

Type Expressions

- For this lecture, a type expression can be
- A primitive type (int, bool);
- A type variable (today we'll use ML notation: 'a, 'b, 'c1, etc.);
- The type constructor T list, where T is a type expression;
- A function type $D \rightarrow C$, where D and C are type expressions.
- Will formulate our problems as systems of type equations between pairs of type expressions.
- Need to find the substitution

Most General Solutions

- Rather trickier:
'a list= 'b list list
- Clearly, there are lots of solutions to this: e.g,

$$
\begin{aligned}
& \text { 'a }=\text { int list } ; \quad \text { 'b }=\text { int } \\
& \text { ' } \mathrm{a}=(\text { int } \rightarrow \text { int }) \text { list } ; \quad \text { ' } \mathrm{b}=\text { int } \rightarrow \text { int } \\
& \text { etc. }
\end{aligned}
$$

- But prefer a most general solution that will be compatible with any possible solution.
- Any substitution for 'a must be some kind of list, and 'b must be the type of element in ' a, but otherwise, no constraints
- Leads to solution
'a = 'b list
where 'b remains a free type variable.
- In general, our solutions look like a bunch of equations ' $\mathrm{a}_{i}=T_{i}$, where the T_{i} are type expressions and none of the ' a_{i} appear in any of the T's.
Last modified: Thu Mar 17 16:11:44 2011

Unification Algorithm

- For any type expression, define
binding $(T)= \begin{cases}\operatorname{binding}\left(T^{\prime}\right), & \text { if } T \text { is bound to type expression } T^{\prime} \\ T, & \text { otherwise }\end{cases}$
- Now proceed recursively:
unify (TA,TB):
$\mathrm{TA}=$ binding (TA); $\mathrm{TB}=$ binding (TB);
if TA is TB: return True; \# True if TA and TB are the same object
if TA is a type variable:
bind TA to TB; return True
bind TB to TA; \# Prevents infinite recursion
if TB is a type variable:
return True
\# Now check that binding TB to TA was really OK.
if TA is $C\left(\mathrm{TA}_{1}, \mathrm{TA}_{2}, \ldots, \mathrm{TA}_{n}\right)$ and TB is $C\left(\mathrm{~TB}_{1}, \ldots, \mathrm{~TB}_{n}\right)$: return unify $\left(\mathrm{TA}_{1}, \mathrm{~TB}_{1}\right)$ and unify $\left(\mathrm{TA}_{2}, \mathrm{~TB}_{2}\right.$ and..
\# where C is some type constructor
else: return False

Example of Unification I

- Try to solve $A=B$, where

$$
A=\prime \mathrm{a} \rightarrow \text { int } ; B=\mathrm{\prime} \mathrm{~b} \text { list } \rightarrow \mathrm{'}^{\mathrm{b}}
$$

by computing unify (A, B).

So ' $\mathrm{a}=$ int list $\mathrm{and}^{\prime} \mathrm{b}=$ int.

Example of Unification II

- Try to solve $A=B$, where
$A={ }^{\prime} \mathrm{a} \rightarrow{ }^{\prime} \mathrm{c}$ list; $B={ }^{\prime} \mathrm{b} \rightarrow{ }^{\prime} \mathrm{a}$
by computing unify (A, B).

So ' $\mathrm{a}={ }^{\prime} \mathrm{b}=$ ' $^{\mathrm{c}}$ list and ' c is free.

Example of Unification III: Simple Recursive Type

- Introduce a new type constructor: ('h, 't) pair, which is intended to model typed Lisp cons-cells (or nil). The car of such a pair has type ' h, and the cdr has type ' t.
- Try to solve $A=B$, where

$$
A=\text { ' } \mathrm{a} ; B=\left({ }^{\prime} \mathrm{b},{ }^{\prime} \mathrm{a}\right) \text { pair }
$$

by computing unify (A, B).

- This one is very easy:

So ' $\mathrm{a}=($ ' b, ' a) pair; ' b is free.

Example of Unification IV: Another Recursive Type

- This time, consider solving $A=B, C=D, A=C$, where
$A=$ 'a; $B=(' \mathrm{~b}, \mathrm{\prime} \mathrm{a})$ pair; $C={ }^{\prime} \mathrm{c} ; ~ D=(' \mathrm{~d}$, ('d, 'c) pair) pair.
We just did the first one, and the second is almost the same, so we'll just skip those steps.

So ' $\mathrm{a}={ }^{\prime} \mathrm{c}=($ ' d, ' a) pair; ' $\mathrm{b}=$ ' d ; ' ' d is free.

Some Type Rules (reprise)

Construct	Type	Conditions
Integer literal	int	
[]	'a list	
hd (L)	'a	L: 'a list
$\dagger 1(L)$	'a list	L: 'a list
$E_{1}+E_{2}$	int	E_{1} : int, E_{2} : int
$E_{1}:: E_{2}$	'a list	E_{1} : 'a, E_{2} : 'a list
$E_{1}=E_{2}$	bool	$E_{1}: ~ ' a, E_{2}$: 'a
$E_{1}!=E_{2}$	bool	$E_{1}: ~ ' a, E_{2}$: 'a
if E_{1} then E_{2} else $E_{3} \mathrm{fi}$	'a	E_{1} : bool, E_{2} : 'a, E_{3} : 'a
$E_{1} E_{2}$	'b	$E_{1}:$ ' $\mathrm{a} \rightarrow \mathrm{\prime}, E_{2}:{ }^{\prime} \mathrm{a}$
def f x1 . . xn = E		$\begin{aligned} & \text { x1: ' } a_{1}, \ldots, \text { xn: ' } a_{n} E::^{\prime} a_{0}, \\ & \text { f: } \mathrm{a}_{1} \rightarrow \ldots \rightarrow \text { ' }_{n} \rightarrow{ }^{\prime} \mathrm{a}_{0} . \end{aligned}$

Example of Unification V

- Try to solve
'b list='a list;' $\mathrm{a} \rightarrow$ 'b = 'c;
'c \rightarrow bool $=$ (bool \rightarrow bool) \rightarrow bool
- We unify both sides of each equation (in any order), keeping the bindings from one unification to the next.

```
'a: bool
'b: 'a
    Unify 'b list, 'a list:
    Unify 'b, 'a
Unify 'a }->\mathrm{ 'b, 'c
Unify 'c }->\mathrm{ bool, (bool }->\mathrm{ bool) }->\mathrm{ bool
    Unify 'c, bool }->\mathrm{ bool:
        Unify 'a }->\mathrm{ 'b, bool }->\mathrm{ bool:
'c: 'a }->\mathrm{ 'b
        bool }->\mathrm{ bool
                                Unify 'a, bool
                                Unify 'b, bool:
                            Unify bool, bool
    Unify bool, bool
```


Using the Type Rules

- Interpret the notation $E: T$, where E is an expression and T is a type, as

$$
\operatorname{type}(E)=T
$$

- Seed the process by introducing a set of fresh type variables to describe the types of all the variables used in the program you are attempting to process. For example, given

```
def f x = x
```

we might start by saying that

```
type(f) = 'a0, type(x) = 'a1
```

- Apply the type rules to your program to get a bunch of Conditions.
- Whenever two Conditions ascribe a type to the same expression, equate those types.
- Solve the resulting equations.

Last modified: Thu Mar 17 16:11:44 2011

Aside: Currying

- Writing
def sqr $\mathrm{x}=\mathrm{x} * \mathrm{x}$;
means essentially that sqr is defined to have the value $\lambda \mathrm{x} . \mathrm{x} * \mathrm{x}$.
- To get more than one argument, write
def $f x y=x+y ;$
and f will have the value $\lambda \mathrm{x} . \lambda \mathrm{y} . \quad \mathrm{x}+\mathrm{y}$
- Its type will be int \rightarrow int \rightarrow int (Note: \rightarrow is right associative).
- So, $\mathrm{f} 23=(\mathrm{f} 2) 3=(\lambda \mathrm{y} .2+\mathrm{y})(3)=5$
- Zounds! It's the CS61A substitution mode!!
- This trick of turning multi-argument functions into one-argument functions is called currying (after Haskell Curry).

Example, contd.

Solve all these equations by sequentially unifying the two sides of each equation, in any order, keeping the bindings as you go.

```
'p = 'a0-> 'a1, 'L = 'a0
'L = 'a2 list
    'a0 = 'a2 list
'f = 'a3 }->\mathrm{ 'a4, 'init = 'a3
'a4 = 'a5 }->\mathrm{ 'a6, 'a2 = 'a5
'a1 = bool, 'init = 'a7, 'a6 = 'a7
    'a3 = 'a7
'a7 = int, int = int
```

So,

$$
\begin{aligned}
& \text { 'p }=\text { 'a5 list } \rightarrow \text { bool, 'L }=\text { 'a5 list, 'init }=\text { int, } \\
& \text { 'f }=\text { int } \rightarrow \text { 'a5 } \rightarrow \text { int }
\end{aligned}
$$

Example

if p L then init else f init (hd L) fi + 3

- Let's initially use 'p, 'L, etc. as the fresh type variables giving the types of identifiers.
- Using the rules then generates equations like this:

```
'p = 'a0-> 'a1, 'L = 'a0, type(p L) = 'a1 # call rule
'L = 'a2 list, type(hd L) = 'a2 # hd rule
'f = 'a3 }->\mathrm{ 'a4, 'init = 'a3, type(f init) = 'a4
    # call rule
'a4 = 'a5-> 'a6, 'a2 = 'a5, type(f init (hd L)) = 'a6
    # call rule
'a1 = bool, 'init = 'a7, 'a6 = 'a7, type(if... fi) = 'a7
    # if rule
'a7 = int, int = int, type(if... fi+3) = int # + rule
```

