
Lecture 3: Finite Automata

Administrivia

• Everyone should now be registered electronically using the link on
our webpage. If you haven’t, do so today!

• I’d like to have teams formed by next Wednesday at the latest.

• Please fill out the background survey linked to on the homework
page.

• HW #2 now available (due next Thursday).

• Tentative test dates (in class): 9 March, 13 April.

• Tentative project due dates: 2 March, 30 March, 29 April.

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 1

An Alternative Style for Describing Languages

• Rather than giving a single pattern, we can give a set of rules.

• Each rule has the form

A : α1α2 · · ·αn, n ≥ 0,

where

– A is a symbol that is intended to stand for a language (set of
strings)—a metavariable or nonterminal symbol.

– Each αi is either a literal character (like "a") or a nonterminal
symbol.

• The interpretation of this rule is

One way to form a string in L(A) (the language denoted by A) is
to concatenate one string each from L(α1), L(α2),

(where L("c") is just the language {"c"}).

• This is Backus-Naur Form (BNF). A set of rules is a grammar.

• Aside: You’ll see that ‘:’ written many different ways, such as ‘::=’,
‘−→’, etc. We’ll just use the same notation our tools use.

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 2

Some Abbreviations

• The basic form from the last slide is good for formal analysis, but
not for writing.

• So, we can allow some abbreviations that are obviously exandable
into the basic forms:

Abbreviation Meaning

A : R1 | · · · | Rn

A : R1

...
A : Rn

A : · · · (R) · · ·
B : R
A : · · ·B · · ·

A : "c1" | · · · | "cn" [c1 · · · cn]

(likewise other character classes)

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 3

Some Technicalities

• From the definition, each nonterminal in a grammar defines a lan-
guage. Often, we are interested in just one of them (the start
symbol), and the others are auxiliary definitions.

• The definition of what a rule means (“One way to form a string in
L(A) is. . . ”) leaves open the possibility that there are other ways to
form items in L(A) than covered in the rule.

• We need that freedom in order to allow multiple rules for A, but we
don’t really want to include strings that aren’t covered by some rule.

• So precise mathematical definitions throw in sentences like:

A grammar defines the minimal languages that contain all strings
that satisfy the rules.

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 4

A Big Restriction (for now)

• For the time being, we’ll also add a restriction. In each rule:

A : α1α2 · · ·αn, n ≥ 0,

we’ll require that if αi is a nonterminal symbol, then either

– All the rules for that symbol have to occured before all the rules
for A, or

– i = n (i.e., is the last item) and αn is A.

• We call such a restricted grammar a Type 3 or regular grammar.
The languages definable by regular grammars are called regular lan-
guages.

Claim: Regular languages are exactly the ones that can be de-
fined by regular expressions.

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 5

Proof of Claim (I)

• Start with a regular expression, R, and make a (possibly not yet
valid) rule,

R: R

• Create a new (preceding) rule for each parenthesized expression.

• This will leave just the constructs X∗, X+’, and X?’. What do we do
with them?

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 6

Proof of Claim (II)

Replace construct. with Q, where

R*
Q :

Q : R Q

R+
Q : R

Q : R Q

R?
Q :

Q : R

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 7

Example

• Consider the regular expression ("+"|"-")?("0"|"1")+

1. R: ("+"|"-")?("0"|"1")+ replace with . . .

2. Q1: "+" | "-"

Q2: "0" | "1"

R: Q1? Q2+ replace with . . .

3. Q3: ǫ | Q1

Q4: Q2 | Q2 Q4

R: Q3 Q4

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 8

Classical Pattern-Matching Implementation

• For compilers, can generally make do with “classical” regular expres-
sions.

• Implementable using finite(-state) automata or FAs. (“Finite state”
= “finite memory”).

• Classical construction:

regular expression ⇒ nondeterministic FA (NFA)
⇒ deterministic FA (DFA) ⇒ table-driven program.

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 9

Review: FA operation

• A FA is a graph whose nodes are states (of memory) and whose edges
are state transitions. There are a finite number of nodes.

• One state is the designated start state.

• Some subset of the nodes are final states.

• Each transition is labeled with a set of symbols (characters, etc.) or
ǫ.

• A FA recognizes a string c1c2 · · · cn if there is a path (sequence of
edges) from the start state to a final state such that the labels
of the edges in sequence, aside from ǫ edges, respectively contain
c1, c2, . . . , cn.

• If the edges leaving any node have disjoint sets of characters and
if there are no ǫ nodes, FA is a DFA, else an NFA.

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 10

Example: What does this DFA recognize?

1 1 1 1 1

1

0 0 0 0 0 0
Bit strings with #
of 1’s divisible by 2
or 3.

What is the simplest equivalent NFA you can think of?

1

1

0 0

1 1

1

0 0 0

ǫ

ǫ

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 11

Example: What does this NFA recognize?

A B C D A B D

[A-Z]
Strings of cap-
itals ending in
ABCDABD.

What is the simplest equivalent DFA you can think of?

0
A

A
B

B
C

C
D A B D

[B-Z] A

A

0 A
A

0 0 A
A

B
B

0 A
A

C
C

0 A
A

0

(Edges without labels mean “any character not covered by another edge.”)

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 12

Example: What does this NFA recognize?

X Y

[XY] Z

[XY]

ǫ

ǫ

ǫ

What is the simplest equivalent DFA you can think of?

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 13

Review: Classical Regular Expressions to NFAs (I)

ǫ

a
a

R1 R2 R1 R2

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 14

Review: Classical Regular Expressions to NFAs (II)

R1 | R2

R1

R2

ǫ

ǫ

ǫ

ǫ

R∗ R

ǫ

ǫ

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 15

Extensions?

• How would you translate φ (the empty language, containing no strings)
into an FA?

• How could you translate ‘R?’ into an NFA?

• How could you translate ‘R+’ into an NFA?

• How could you translate ‘R1|R2| · · · |Rn’ into an NFA?

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 16

Example of Conversion

How would you translate ((ab)*|c)* into an NFA (using the construc-
tion above)?

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 17

Example of Conversion

How would you translate ((ab)*|c)* into an NFA (using the construc-
tion above)?

a b

c

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 17

Example of Conversion

How would you translate ((ab)*|c)* into an NFA (using the construc-
tion above)?

a b

c

ǫ

ǫ

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 17

Example of Conversion

How would you translate ((ab)*|c)* into an NFA (using the construc-
tion above)?

a b

c

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 17

Example of Conversion

How would you translate ((ab)*|c)* into an NFA (using the construc-
tion above)?

a b

c

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 17

Abstract Implementation of NFAs

1
X

2
Y

3

4
[XY]

5
Z

6

[XY]

ǫ0

ǫ

ǫ

1
X

2
Y

3

4
[XY]

5
Z

6

[XY]

ǫ0

ǫ

ǫ

1
X

2
Y

3

4
[XY]

5
Z

6

[XY]

ǫ0

ǫ

ǫ

1
X

2
Y

3

4
[XY]

5
Z

6

[XY]

ǫ0

ǫ

ǫ

1
X

2
Y

3

4
[XY]

5
Z

6

[XY]

ǫ0

ǫ

ǫ String: XYYZ

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 18

Review: Converting to DFAs

• OBSERVATION: The set of states that are marked (colored red)
changes with each character in a way that depends only on the set
and the character.

• In other words, machine on previous slide acted like this DFA:

014
X

25
Y

35

5
Z

6

[XY]

Y X [XY] Z

Z

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 19

DFAs as Programs

• Can realize DFA in program with control structure:

state = INITIAL;

for (s = input; *s != ’\0’; s += 1) {

switch (state):

case INITIAL:

if (*s == ’a’) state = A_STATE; break;

case A_STATE:

if (*s == ’b’) state = B_STATE; else state = INITIAL; break;

...

}

}

return state == FINAL1 || state == FINAL2;

• Or with data structure (table driven):

state = INITIAL;

for (s = input; *s != ’\0’; s += 1)

state = transition[state][s];

return isfinal[state];

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 20

What Flex Does

• Flex program specification is giant regular expression of the form
R1|R2| · · · |Rn, where none of the Ri match ǫ.

• Each final state labeled with some action.

• Converted, by previous methods, into a table-driven DFA.

• But, this particular DFA is used to recognize prefixes of the (re-
maining) input: initial portions that put machine in a final state.

• Which final state(s) we end up in determine action. To deal with
multiple actions:

– Match longest prefix (“maximum munch”).

– If there are multiple matches, apply first rule in order.

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 21

How Do They Do It?

• How can we use a DFA to recognize longest match?

• How can we use DFA to act on first of equal-length matches?

• How can we use a DFA to handle the R1/R2 pattern (matches just
R1 but only if followed by R2, like R1(?=R2) in Python)?

Last modified: Mon Jan 31 13:07:49 2011 CS164: Lecture #3 22

	Lecture 3: Finite Automata
	An Alternative Style for Describing Languages
	Some Abbreviations
	Some Technicalities
	A Big Restriction (for now)
	Proof of Claim (I)
	Proof of Claim (II)
	Example
	Classical Pattern-Matching Implementation
	Review: FA operation
	Example: What does this DFA recognize?
	Example: What does this NFA recognize?
	Example: What does this NFA recognize?
	Review: Classical Regular Expressions to NFAs (I)
	Review: Classical Regular Expressions to NFAs (II)
	Extensions?
	Example of Conversion
	Abstract Implementation of NFAs
	Review: Converting to DFAs
	DFAs as Programs
	What Flex Does
	How Do They Do It?

