Lecture 3: Finite A	utomata	An Alternative Style for Describing Languages			
Administrivia		 Rather than giving a single pattern, we can give a set of rules. 			
[,] Everyone should now be registered electronically using the link on our webpage. If you haven't, do so today!		• Each rule has the form $A : c_1 c_2 \dots c_n > 0$			
 I'd like to have teams formed by next W Please fill out the background survey page. HW #2 now available (due next Thursdate) Tentative test dates (in class): 9 March Tentative project due dates: 2 March, 3 	Vednesday at the latest. linked to on the homework ay). a, 13 April. 30 March, 29 April.	 A: α₁α₂α_n, n ≥ 0, where A is a symbol that is intended to stand for a language (set of strings)—a metavariable or nonterminal symbol. Each α_i is either a literal character (like "a") or a nonterminal symbol. The interpretation of this rule is One way to form a string in L(A) (the language denoted by A) is to concatenate one string each from L(α₁), L(α₂), (where L("c") is just the language {"c"}). This is Backus-Naur Form (BNF). A set of rules is a grammar. 			
		 Aside: You'll see that ':' written many different ways, such as '::=', '→', etc. We'll just use the same notation our tools use. 			
Last modified: Mon Jan 31 13:07:49 2011	CS164: Lecture #3 1	Last modified: Mon Jan 31 13:07:49 2011 C5164: Lecture #3 2			

Some Abbreviations

- The basic form from the last slide is good for formal analysis, but not for writing.
- So, we can allow some abbreviations that are obviously exandable into the basic forms:

Abbreviation	Meaning		
	$A: \mathcal{R}_1$		
$A: \mathcal{R}_1 \cdots \mathcal{R}_n$: :		
	$A: \mathcal{R}_n$		
$A \cdot \ldots (\mathcal{R}) \cdots$	$B: \mathcal{R}$		
· · · · · · · · · · · · · · · · · · ·	$A:\cdots B\cdots$		
$A: "c_1" \mid \cdots \mid "c_n"$	$[c_1 \cdots c_n]$		
(likewise other character classes)			

Some Technicalities

- From the definition, each nonterminal in a grammar defines a language. Often, we are interested in just one of them (the *start symbol*), and the others are auxiliary definitions.
- The definition of what a rule means ("One way to form a string in L(A) is...") leaves open the possibility that there are other ways to form items in L(A) than covered in the rule.
- We need that freedom in order to allow multiple rules for A, but we don't really want to include strings that aren't covered by some rule.
- So precise mathematical definitions throw in sentences like:

A grammar defines the *minimal* languages that contain all strings that satisfy the rules.

A Big Restriction (for now)		Proof of Claim (I)				
 For the time being, we'll also add a restriction. In each rule: A: α₁α₂····α_n, n≥ 0, we'll require that if α_i is a nonterminal symbol, then either All the rules for that symbol have to occured before all the rules for A, or i = n (i.e., is the last item) and α_n is A. We call such a restricted grammar a Type 3 or regular grammar. The languages definable by regular grammars are called regular languages. Claim: Regular languages are exactly the ones that can be defined by regular expressions. 		 Start with a regular expression, R, and make a (possibly not yet valid) rule, R: R Create a new (preceding) rule for each parenthesized expression. This will leave just the constructs X*, X+', and X?'. What do we do with them? 				
Last modified: Mon Jan 31 13:07:49 2011	Proof of Claim (TT)	CS164: Lecture #3 5	Last modified: Mon S	Jan 31 13:07:49 2011	CS164: Lecture #3 6	
Penlace construct	with () where		e Consida	n the necular expression ("+	C _)2(
R* R+	Q : Q : R Q Q : R Q Q : R Q Q : R Q		1. I 2.	$\begin{array}{c} \text{R:} & ("+" "-")?("0" "1") + \\ & \mathbb{Q}_1: "+" "-" \\ & \mathbb{Q}_2: "0" "1" \\ & \mathbb{R}: \ \mathbb{Q}_1? \ \mathbb{Q}_2+ \end{array}$	replace with	
R?	Q : Q : R		3.	$f Q_3:\ \epsilon\ f \mid\ f Q_1$ $f Q_4:\ f Q_2\ f \mid\ f Q_2\ f Q_4$ R: $f Q_3\ f Q_4$		

Example of Conversion

How would you translate ((ab)*|c)* into an NFA (using the construction above)?

Last modified: Mon Jan 31 13:07:49 2011

CS164: Lecture #3 17

Review: Converting to DFAs

- OBSERVATION: The set of states that are marked (colored red) changes with each character in a way that depends only on the set and the character.
- In other words, machine on previous slide acted like this DFA:

Abstract Implementation of NFAs

DFAs as Programs

• Can realize DFA in program with control structure:

```
state = INITIAL;
for (s = input; *s != '\0'; s += 1) {
    switch (state):
    case INITIAL:
        if (*s == 'a') state = A_STATE; break;
    case A_STATE:
        if (*s == 'b') state = B_STATE; else state = INITIAL; break;
    ...
    }
}
return state == FINAL1 || state == FINAL2;
```

• Or with data structure (table driven):

```
state = INITIAL;
for (s = input; *s != '\0'; s += 1)
    state = transition[state][s];
return isfinal[state];
```

What Flex Does

- Flex program specification is giant regular expression of the form $R_1|R_2|\cdots|R_n$, where none of the R_i match ϵ .
- Each final state labeled with some action.
- Converted, by previous methods, into a table-driven DFA.
- But, this particular DFA is used to recognize *prefixes* of the (remaining) input: initial portions that put machine in a final state.
- Which final state(s) we end up in determine action. To deal with multiple actions:
 - Match longest prefix ("maximum munch").
 - If there are multiple matches, apply first rule in order.

How Do They Do It?

- How can we use a DFA to recognize longest match?
- How can we use DFA to act on first of equal-length matches?
- How can we use a DFA to handle the R_1/R_2 pattern (matches just R_1 but only if followed by R_2 , like R_1 (?= R_2) in Python)?

Last modified: Mon Jan 31 13:07:49 2011	CS164: Lecture #3 21	Last modified: Mon Jan 31 13:07:49 2011	C5164: Lecture #3 22