Lecture 3: Finite Automata

Administrivia

- Everyone should now be registered electronically using the link on our webpage. If you haven't, do so today!
- I'd like to have teams formed by next Wednesday at the latest.
- Please fill out the background survey linked to on the homework page.
- HW \#2 now available (due next Thursday).
- Tentative test dates (in class): 9 March, 13 April.
- Tentative project due dates: 2 March, 30 March, 29 April.

An Alternative Style for Describing Languages

- Rather than giving a single pattern, we can give a set of rules.
- Each rule has the form

$$
A: \alpha_{1} \alpha_{2} \cdots \alpha_{n}, \quad n \geq 0,
$$

where

- A is a symbol that is intended to stand for a language (set of strings)-a metavariable or nonterminal symbol.
- Each α_{i} is either a literal character (like "a") or a nonterminal symbol.
- The interpretation of this rule is

One way to form a string in $L(A)$ (the language denoted by A) is to concatenate one string each from $L\left(\alpha_{1}\right), L\left(\alpha_{2}\right), \ldots$.
(where $L(" c ")$ is just the language $\{" c "\}$).

- This is Backus-Naur Form (BNF). A set of rules is a grammar.
- Aside: You'll see that ':' written many different ways, such as ': :=', ' \longrightarrow ', etc. We'll just use the same notation our tools use.

Some Abbreviations

- The basic form from the last slide is good for formal analysis, but not for writing.
- So, we can allow some abbreviations that are obviously exandable into the basic forms:

Abbreviation	Meaning
$A: \mathcal{R}_{1}\|\cdots\| \mathcal{R}_{n}$	$\begin{gathered} A: \mathcal{R}_{1} \\ \vdots \\ A: \mathcal{R}_{n} \end{gathered}$
$A: \cdots(\mathcal{R}) \cdots$	$\begin{aligned} & B: \mathcal{R} \\ & A: \cdots B \cdots \end{aligned}$
$\begin{aligned} & \hline A: \quad c_{1} "\|\ldots\| l\|l\| l \\ & \text { (likewise other character classes) } \end{aligned}$	[$c_{1} \cdots c_{n}$]

Some Technicalities

- From the definition, each nonterminal in a grammar defines a language. Often, we are interested in just one of them (the start symbol), and the others are auxiliary definitions.
- The definition of what a rule means ("One way to form a string in $L(A)$ is...") leaves open the possibility that there are other ways to form items in $L(A)$ than covered in the rule.
- We need that freedom in order to allow multiple rules for A, but we don't really want to include strings that aren't covered by some rule.
- So precise mathematical definitions throw in sentences like:

A grammar defines the minimal languages that contain all strings that satisfy the rules.

A Big Restriction (for now)

- For the time being, we'll also add a restriction. In each rule:

$$
A: \alpha_{1} \alpha_{2} \cdots \alpha_{n}, \quad n \geq 0,
$$

we'll require that if α_{i} is a nonterminal symbol, then either

- All the rules for that symbol have to occured before all the rules for A, or
- $i=n$ (i.e., is the last item) and α_{n} is A.
- We call such a restricted grammar a Type 3 or regular grammar. The languages definable by regular grammars are called regular languages.

Claim: Regular languages are exactly the ones that can be defined by regular expressions.

Proof of Claim (I)

- Start with a regular expression, \mathcal{R}, and make a (possibly not yet valid) rule,

$$
\mathrm{R}: \mathcal{R}
$$

- Create a new (preceding) rule for each parenthesized expression.
- This will leave just the constructs $X *, X+{ }^{\prime}$, and X ?'. What do we do with them?

Proof of Claim (II)

Replace construct. with Q, where
$R *$

Proof of Claim (II)

Replace construct. with Q, where
$R *$	$\mathrm{Q}:$
	$\mathrm{Q}: \mathrm{R} \mathrm{Q}$

$$
R+
$$

Proof of Claim (II)

Replace construct. with Q, where
$\mathrm{Q}:$ $\mathrm{Q}: \mathrm{R} \mathrm{Q}$ $\mathrm{Q}: \mathrm{R}$ $\mathrm{Q}: \mathrm{R} \mathrm{Q}$	

R ?

Proof of Claim (II)

Replace construct. with Q, where
$R *$	$\mathrm{Q}:$
	$\mathrm{Q}: \mathrm{R} \mathrm{Q}$
$R+$	$\mathrm{Q}: \mathrm{R}$
	$\mathrm{Q}: \mathrm{R} \mathrm{Q}$
$R ?$	$\mathrm{Q}:$
	$\mathrm{Q}: \mathrm{R}$

Example

- Consider the regular expression ("+"|"-")? ("0"|"1")+

1. $R:("+" \mid "-") ?(" 0 " \mid " 1 ")+\quad$ replace with...
2. $Q_{1}: "+" \mid "-"$
$Q_{2}: ~ " 0 " \mid " 1 "$
$R: Q_{1}$? $Q_{2}+$
replace with...
3. $\quad \mathrm{Q}_{3}: \epsilon \mid \mathrm{Q}_{1}$
$\mathrm{Q}_{4}: \mathrm{Q}_{2} \mid \mathrm{Q}_{2} \mathrm{Q}_{4}$
R : $\mathrm{Q}_{3} \mathrm{Q}_{4}$

Classical Pattern-Matching Implementation

- For compilers, can generally make do with "classical" regular expressions.
- Implementable using finite(-state) automata or FAs. ("Finite state" = "finite memory").
- Classical construction:
regular expression \Rightarrow nondeterministic $F A$ (NFA)
\Rightarrow deterministic FA (DFA) \Rightarrow table-driven program.

Review: FA operation

- A FA is a graph whose nodes are states (of memory) and whose edges are state transitions. There are a finite number of nodes.
- One state is the designated start state.
- Some subset of the nodes are final states.
- Each transition is labeled with a set of symbols (characters, etc.) or ϵ.
- A FA recognizes a string $c_{1} c_{2} \cdots c_{n}$ if there is a path (sequence of edges) from the start state to a final state such that the labels of the edges in sequence, aside from ϵ edges, respectively contain $c_{1}, c_{2}, \ldots, c_{n}$.
- If the edges leaving any node have disjoint sets of characters and if there are no ϵ nodes, FA is a DFA, else an NFA.

Example: What does this DFA recognize?

What is the simplest equivalent NFA you can think of?

Example: What does this DFA recognize?

Bit strings with \# of 1 's divisible by 2 or 3 .

What is the simplest equivalent NFA you can think of?

Example: What does this DFA recognize?

Bit strings with \# of 1 's divisible by 2 or 3 .

What is the simplest equivalent NFA you can think of?

Example: What does this NFA recognize?

What is the simplest equivalent DFA you can think of?

Example: What does this NFA recognize?

Strings of capitals ending in ABCDABD.
What is the simplest equivalent DFA you can think of?

Example: What does this NFA recognize?

What is the simplest equivalent DFA you can think of?

(Edges without labels mean "any character not covered by another edge.")

Example: What does this NFA recognize?

What is the simplest equivalent DFA you can think of?

Review: Classical Regular Expressions to NFAs (I)

Review: Classical Regular Expressions to NFAs (II)

Extensions?

- How would you translate ϕ (the empty language, containing no strings) into an FA?
- How could you translate 'R?' into an NFA?
- How could you translate 'R+' into an NFA?
- How could you translate ' $R_{1}\left|R_{2}\right| \cdots \mid R_{n}$ ' into an NFA?

Example of Conversion

How would you translate ($(\mathrm{ab}) * \mid \mathrm{c})$ * into an NFA (using the construction above)?

Example of Conversion

How would you translate ($(\mathrm{ab}) * \mid \mathrm{c})$ * into an NFA (using the construction above)?

Example of Conversion

How would you translate ($(\mathrm{ab}) * \mid \mathrm{c})$ * into an NFA (using the construction above)?

Example of Conversion

How would you translate $((a b) * \mid c) *$ into an NFA (using the construction above)?

Example of Conversion

How would you translate ($(\mathrm{ab}) * \mid \mathrm{c})$ * into an NFA (using the construction above)?

Abstract Implementation of NFAs

Review: Converting to DFAs

- OBSERVATION: The set of states that are marked (colored red) changes with each character in a way that depends only on the set and the character.
- In other words, machine on previous slide acted like this DFA:

DFAs as Programs

- Can realize DFA in program with control structure:

```
state = INITIAL;
for (s = input; *s != '\0'; s += 1) {
        switch (state):
        case INITIAL:
            if (*s == 'a') state = A_STATE; break;
        case A_STATE:
            if (*s == 'b') state = B_STATE; else state = INITIAL; break;
    }
}
return state == FINAL1 || state == FINAL2;
```

- Or with data structure (table driven):

```
state = INITIAL;
for (s = input; *s != '\0'; s += 1)
    state = transition[state][s];
return isfinal[state];
```


What Flex Does

- Flex program specification is giant regular expression of the form $R_{1}\left|R_{2}\right| \cdots \mid R_{n}$, where none of the R_{i} match ϵ.
- Each final state labeled with some action.
- Converted, by previous methods, into a table-driven DFA.
- But, this particular DFA is used to recognize prefixes of the (remaining) input: initial portions that put machine in a final state.
- Which final state(s) we end up in determine action. To deal with multiple actions:
- Match longest prefix ("maximum munch").
- If there are multiple matches, apply first rule in order.

How Do They Do It?

- How can we use a DFA to recognize longest match?
- How can we use DFA to act on first of equal-length matches?
- How can we use a DFA to handle the R_{1} / R_{2} pattern (matches just R_{1} but only if followed by R_{2}, like $R_{1}\left(?=R_{2}\right)$ in Python)?

