
Lecture #31: Code Generation

[This lecture adopted in part from notes by R. Bodik]

Last modified: Fri Apr 8 01:15:37 2011 CS164: Lecture #31 1

Intermediate Languages and Machine Languages

• From trees such as output from project #2, could produce machine
language directly.

• However, it is often convenient to first generate some kind of inter-
mediate language (IL): a “high-level machine language” for a “virtual
machine.”

• Advantages:

– Separates problem of extracting the operational meaning (the
dynamic semantics) of a program from the problem of producing
good machine code from it, because it. . .

– Gives a clean target for code generation from the AST.

– By choosing IL judiciously, we can make the conversion of IL →

machine language easier than the direct conversion of AST→ma-
chine language. Helpful when we want to target several different
architectures (e.g., gcc).

– Likewise, if we can use the same IL for multiple languages, we can
re-use the IL → machine language implementation (e.g., gcc, CIL
from Microsoft’s Common Language Infrastructure).

Last modified: Fri Apr 8 01:15:37 2011 CS164: Lecture #31 2

Stack Machines as Virtual Machines

• A simple evaluation model: instead of registers, a stack of values
for intermediate results.

• Examples: The Java Virtual Machine, the Postscript interpreter.

• Each operation (1) pops its operands from the top of the stack, (2)
computes the required operation on them, and (3) pushes the result
on the stack.

• A program to compute 7 + 5:

push 7 # Push constant 7 on stack

push 5

add # Pop two 5 and 7 from stack, add, and push result.

• Advantages

– Uniform compilation scheme: Each operation takes operands from
the same place and puts results in the same place.

– Fewer explict operands in instructions means smaller encoding of
instructions and more compact programs.

– Meshes nicely with subroutine calling conventions that push argu-
ments on stack.

Last modified: Fri Apr 8 01:15:37 2011 CS164: Lecture #31 3

Stack Machine with Accumulator

• The add instruction does 3 memory operations: Two reads and one
write of the stack.

• The top of the stack is frequently accessed

• Idea: keep most recently computed value in a register (called the
accumulator) since register accesses are faster.

• For an operation op(e1, . . . , en):

– compute each of e1, . . . , en−1 into acc and then push on the stack;

– compute en into the accumulator;

– perform op computation, with result in acc.

– pop e1, . . . , en−1 off stack.

• The add instruction is now

acc := acc + top_of_stack

pop one item off the stack

and uses just one memory operation (popping just means adding con-
stant to stack-pointer register).

• After computing an expression the stack is as it was before com-
puting the operands.

Last modified: Fri Apr 8 01:15:37 2011 CS164: Lecture #31 4

Example: Full computation of 7+5

acc := 7

push acc

acc := 5

acc := acc + top_of_stack

pop stack

Last modified: Fri Apr 8 01:15:37 2011 CS164: Lecture #31 5

A Point of Order

• Often more convenient to push operands in reverse order, so right-
most operand pushed first.

• This is a common convention for pushing function arguments, and is
especially natural when stack grows toward lower addresses.

• Also nice for non-commutative operations on architectures such as
the ia32.

• Example: compute x - y. We show assembly code on the right

acc := y movl y, %eax

push acc pushl %eax

acc := x movl x, %eax

acc := acc - top_of_stack subl (%esp), %eax

pop stack addl $4, %esp

Last modified: Fri Apr 8 01:15:37 2011 CS164: Lecture #31 6

Translating from AST to Stack Machine

• A simple recursive pattern usually serves for expressions.

• At the top level, our trees might have an expression-code method:

class AST {

...

/** Generate code for me, leaving my value on the stack. */

virtual void cgen (VM* machine);

}

• Implementations of cgen then obey this general comment, and each
assumes that its children will as well. E.g.,

class BinopNode : public AST {

...

void cgen (VM* machine) {

getRight ()->cgen (machine);

getLeft ()->cgen (machine);

machine->emitInst (translateToInst (getOp ()));

}

}

We assume here a VM is some abstraction of the virtual machine
we’re producing code for. emitInst adds machine instructions to
the program, and translateToInst converts, e.g., a ’+’ to add.

Last modified: Fri Apr 8 01:15:37 2011 CS164: Lecture #31 7

Virtual Register Machines and Three-Address Code

• Another common kind of virtual machine has an infinite supply of
registers, each capable of holding a scalar value or address, in addi-
tion to ordinary memory.

• A common IL in this case is some form of three-address code, so
called because the typical “working” instruction has the form

target := operand1 ⊕ operand2

where there are two source “addresses,” one destination “address”
and an operation (⊕).

• Often, we require that the operands in the full three-address form
denote (virtual) registers or immediate (literal) values.

Last modified: Fri Apr 8 01:15:37 2011 CS164: Lecture #31 8

Three-Address Code, continued

• A few other forms deal with memory and other kinds of operation:

memory_operand := register_or_immediate_operand

register_operand := memory_operand

goto label

if operand1 ≺ operand2 then goto label

param operand ; Push parameter for call.

call operand, # of parameters ; Call, put return in specific register

• Here, ≺ stands for some kind of comparison. Memory operands
might be labels of static locations, or indexed operands such as (in
C-like notation) *(r1+4) or *(r1+r2).

Last modified: Fri Apr 8 01:15:37 2011 CS164: Lecture #31 9

Translating from AST into Three-Address Code

• This time, we’ll have the cgen routine return where it has put its
result:

class AST {

...

/** Generate code to compute my value, returning the location

* of the result. */

virtual Operand* cgen (VM* machine);

}

• Where an Operand denotes some abstract place holding a value.

• Once again, we rely on our children to obey this general comment:

class BinopNode : public AST {

Operand* cgen (VM* machine) {

Operand* left = getLeft ()->cgen (machine);

Operand* right = getRight ()->cgen (machine);

Operand* result = machine->allocateRegister ();

machine->emitInst (result, translateToInst (getOp ()), left, right);

return result;

}

}

• emitInst now produces three-address instructions.
Last modified: Fri Apr 8 01:15:37 2011 CS164: Lecture #31 10

A Larger Example

• Consider a small language with integers and integer operations:

P: D ";" P | D

D: "def" id(ARGS) "=" E;

ARGS: id "," ARGS | id

E: int | id | "if" E1 "=" E2 "then" E3 "else" E4 "fi"

| E1 "+" E2 | E1 "-" E2 | id "(" E1,...,En ")"

• The first function definition f is the “main” routine

• Running the program on input i means computing f(i)

• Assume a project-2-like AST.

• Let’s continue implementing cgen (’+’ and ’-’ already done).

Last modified: Fri Apr 8 01:15:37 2011 CS164: Lecture #31 11

Simple Cases: Literals and Sequences

Conversion of D ";" P:

class StmtListNode : public AST {

...

Operand* cgen (VM* machine) {

for (int i = 0; i < arity (); i += 1)

get (i)->cgen (machine);

}

return Operand::NoneOperand;

}

class IntLiteralNode : public AST {

...

Operand* cgen (VM* machine) {

return machine->immediateOperand (intTokenValue ());

}

}

• NoneOperand is an Operand that contains None.

Last modified: Fri Apr 8 01:15:37 2011 CS164: Lecture #31 12

Identifiers

class IdNode : public AST {

...

Operand* cgen (VM* machine) {

Operand result = machine->allocateRegister ();

machine->emitInst (MOVE, result, getDecl()->getMyLocation (machine));

return result;

}

}

• That is, we assume that the declaration object holding information
about this occurrence of the identifier contains its location.

Last modified: Fri Apr 8 01:15:37 2011 CS164: Lecture #31 13

Calls

class CallNode : public AST {

...

Operand* cgen (VM* machine) {

AST* args = getArgList ();

for (int i = args->arity ()-1; i >= 0; i -= 1)

machine->emitInst (PARAM, args.get (i)->cgen (machine));

Operand* callable = getCallable ()->cgen (machine);

machine->emitInst (CALL, callable, args->arity ());

return Operand::ReturnOperand;

}

}

• ReturnOperand is abstract location where functions return their
value.

Last modified: Fri Apr 8 01:15:37 2011 CS164: Lecture #31 14

Control Expressions: if

class IfExprNode : public AST {

...

Operand* cgen (VM* machine) {

Operand* left = getLeft ()->cgen (machine);

Operand* right = getRight ()->cgen (machine);

Label* elseLabel = machine->newLabel ();

Label* doneLabel = machine->newLabel ();

machine->emitInst (IFNE, left, right, elseLabel);

Operand* result = machine->allocateRegister ();

machine->emitInst (MOVE, result, getThenPart ()->cgen (machine));

machine->emitInst (GOTO, doneLabel);

machine->placeLabel (elseLabel);

machine->emitInst (MOVE, result, getElsePart ()->cgen (machine));

machine->placeLabel (doneLabel);

return result;

}

}

• newLabel creates a new, undefined assembler instruction label.

• placeLabel inserts a definition of the label in the code.

Last modified: Fri Apr 8 01:15:37 2011 CS164: Lecture #31 15

Code generation for ‘def’

class DefNode : public AST {

...

Operand* cgen (VM* machine) {

machine->placeLabel (getName ());

machine->emitFunctionPrologue ();

Operand* result = getBody ()->cgen (machine);

machine->emitInst (MOVE, Operand::ReturnOperand, result);

machine->emitFunctionEpilogue ();

return Operand::NoneOperand;

}

}

• Where function prologues and epilogues are standard code sequences
for entering and leaving functions, setting frame pointers, etc.

Last modified: Fri Apr 8 01:15:37 2011 CS164: Lecture #31 16

A Sample Translation

Program for computing the Fibonacci numbers:

def fib(x) = if x = 1 then 0 else

if x = 2 then 1 else

fib(x - 1) + fib(x - 2)

Possible code generated:

f: function prologue
r1 := x L3: r5 := x

if r1 != 1 then goto L1 r6 := r5 - 1

r2 := 0 param r6

goto L2 call fib, 1

L1: r3 := x r7 := rret

if r3 != 2 then goto L3 r8 := x

r4 := 1 r9 := r8 - 2

goto L4 param r9

call fib, 1

r10 := r7 + rret

r4 := r10

L4: r2 := r4

L2: rret := r2

function epilogue

Last modified: Fri Apr 8 01:15:37 2011 CS164: Lecture #31 17

	Lecture #31: Code Generation
	Intermediate Languages and Machine Languages
	Stack Machines as Virtual Machines
	Stack Machine with Accumulator
	Example: Full computation of 7+5
	A Point of Order
	Translating from AST to Stack Machine
	Virtual Register Machines and Three-Address Code
	Three-Address Code, continued
	Translating from AST into Three-Address Code
	A Larger Example
	Simple Cases: Literals and Sequences
	Identifiers
	Calls
	Control Expressions: if
	Code generation for `def'
	A Sample Translation

