
Lecture 35: IL for Arrays

Last modified: Sun Apr 17 15:31:35 2011 CS164: Lecture #35 1



One-dimensional Arrays

• How do we process retrieval from and assignment to x[i], for an
array x?

• We assume that all items of the array have fixed size—S bytes—
and are arranged sequentially in memory (the usual representation).

• Easy to see that the address of x[i] must be

&x + S · i,

where &x is intended to denote the address of the beginning of x.

• Generically, we call such formulae for getting an element of a data
structure access algorithms.

• The IL might look like this:

cgen(&A[E], t0):

cgen(&A, t1)

cgen(E, t2)

⇒ t3 := t2 * S

⇒ t0 := t1 + t3

Last modified: Sun Apr 17 15:31:35 2011 CS164: Lecture #35 2



Multi-dimensional Arrays

• A 2D array is a 1D array of 1D arrays.

• Java uses arrays of pointers to arrays for >1D arrays.

• But if row size constant, for faster access and compactness, may
prefer to represent an MxN array as a 1D array of 1D rows (not
pointers to rows): row-major order. . .

• Or, as in FORTRAN, a 1D array of 1D columns: column-major order.

• So apply the formula for 1D arrays repeatedly—first to compute the
beginning of a row and then to compute the column within that row:

&A[i][j] = &A + i · S · N + j · S

for an M-row by N-column array, where S, again, is the size of an
individual element.

Last modified: Sun Apr 17 15:31:35 2011 CS164: Lecture #35 3



IL for M × N 2D array

cgen(&e1[e2,e3], t):

cgen(e1, t1); cgen(e2,t2); cgen(e3,t3)

cgen(N, t4) # (N need not be constant)

⇒ t5 := t4 * t2

⇒ t6 := t5 + t3

⇒ t7 := t6 * S

⇒ t := t7 + t1

Last modified: Sun Apr 17 15:31:35 2011 CS164: Lecture #35 4



Array Descriptors

• Calculation of element address &e1[e2,e3] has the form

VO + S1 × e2 +S2 × e3

, where

– VO (&e1[0,0]) is the virtual origin.

– S1 and S2 are strides.

– All three of these are constant throughout the lifetime of the
array (assuming arrays of constant size).

• Therefore, we can package these up into an array descriptor, which
can be passed in lieu of the array itself, as a kind of “fat pointer” to
the array:

&e1[0][0] S×N S

Last modified: Sun Apr 17 15:31:35 2011 CS164: Lecture #35 5



Array Descriptors (II)

• Assuming that e1 now evaluates to the address of a 2D array de-
scriptor, the IL code becomes:

cgen(&e1[e2,e3], t):

cgen(e1, t1); cgen(e2,t2); cgen(e3,t3)

⇒ t4 := *t1; # The VO

⇒ t5 := *(t1+4) # Stride #1

⇒ t6 := *(t1+8) # Stride #2

⇒ t7 := t5 * t2

⇒ t8 := t6 * t3

⇒ t9 := t4 + t7

⇒ t10:= t9 + t8

Last modified: Sun Apr 17 15:31:35 2011 CS164: Lecture #35 6



Array Descriptors (III)

• By judicious choice of descriptor values, can make the same formula
work for different kinds of array.

• For example, if lower bounds of indices are 1 rather than 0, must
compute address

&e[1,1] + S1 × (e2-1) + S2 × (e3-1)

• But some algebra puts this into the form

VO’ + S1 × e2 + S2 × e3

where

VO’ = &e[1,1] - S1 - S2 = &e[0,0] (if it existed).

• So with the descriptor

VO’ S×N S

we can use the same code as on the last slide.

Last modified: Sun Apr 17 15:31:35 2011 CS164: Lecture #35 7


	Lecture 35: IL for Arrays
	One-dimensional Arrays
	Multi-dimensional Arrays
	IL for MN 2D array
	Array Descriptors
	Array Descriptors (II)
	Array Descriptors (III)

