Lecture 37: Global Optimization

[Adapted from notes by R. Bodik and G. Necula]

A Simple Example: Copy Propagation

- Without other assignments to X , it is valid to treat the red parts as if they were in the same basic block.
- But as soon as one other block on the path to the bottom block assigns to X, we can no longer do so.
- It is correct to apply copy propagation to a variable x from an assignment statement $A: x:=\ldots$ to a given use of x in statement B only if the last assignment to x in every path from to B is A.

Undecidability of Program Properties

- Rice's "theorem:" Most interesting dynamic properties of a program are undecidable. E.g.,
- Does the program halt on all (some) inputs? (Halting Problem)
- Is the result of a function F always positive? (Consider
def $F(x)$: H(x)
return 1
Result is positive iff H halts.)
- Syntactic properties are typically decidable (e.g., "How many occurrences of x are there?").
- Theorem does not apply in absence of loops

Example: Global Constant Propagation

- Global constant propagation is just the restriction of copy propagation to constants.
- In this example, we'll consider doing it for a single variable (X).
- At every program point (i.e., before or after any instruction), we associate one of the following values with X

Value	Interpretation
$\#$	(aka bottom) No value has reached here (yet)
c	(For c a constant) X definitely has the value c.
$*$	(aka top) Don't know what, if any, constant value X has.

Conservative Program Analyses

- If a certain optimization requires P to be true, then
- If we know that P is definitely true, we can apply the optimization
- If we don't know whether P is true, we simply don't do the optimization. Since optimizations are not supposed to change the meaning of a program, this is safe.
- In other words, in analyzing a program for properties like P, it is always correct (albeit non-optimal) to say "don't know."
- The trick is to say it as seldom as possible.
- Global dataflow analysis is a standard technique for solving problems with these characteristics.

Example of Result of Constant Propagation

Using Analysis Results

- Given global constant information, it is easy to perform the optimization:
- If the point immediately before a statement using x tells us that $\mathrm{x}=\mathrm{c}$, then replace x with c .
- Otherwise, leave it alone (the conservative option).
- But how do we compute these properties $\mathrm{x}=\ldots$?

Transfer Functions

- Basic Idea: Express the analysis of a complicated program as a combination of simple rules relating the change in information between adjacent statements
- That is, we "push" or transfer information from one statement to the next.
- For each statement s, we end up with information about the value of x immediately before and after s :
$\operatorname{Cin}(X, s)=$ value of x before s
Cout $(X, s)=$ value of x after s
- Here, the "values of x " we use come from an abstract domain, containing the values we care about-\#, $*, k$-values computed statically by our analysis.
- For the constant propagation problem, we'll compute Cout from Cin, and we'll get Cin from the Couts of predecessor statements, $\operatorname{Cout}(X$, $\left.p_{1}\right), \ldots, \operatorname{Cout}\left(X, p_{n}\right)$.

Constant Propagation: Rule 1

If $\operatorname{Cout}\left(X, p_{i}\right)=*$ for some i, then $\operatorname{Cin}(X, s)=*$

Constant Propagation: Rule 2

If $\operatorname{Cout}\left(X, p_{i}\right)=c$ and $\operatorname{Cout}\left(X, p_{j}\right)=\mathrm{d}$ with constants $c \neq d$, then $\operatorname{Cin}(X, s)=*$

Constant Propagation: Rule 3

If $\operatorname{Cout}\left(X, p_{i}\right)=c$ for some i and $\operatorname{Cout}\left(X, p_{j}\right)=c$ or $\operatorname{Cout}\left(X, p_{j}\right)=\#$ for all j, then $\operatorname{Cin}(X, s)=c$

Constant Propagation: Computing Cout

- Rules 1-4 relate the out of one statement to the in of the successor statements, thus propagating information forward across CFG edges.
- Now we need local rules relating the in and out of a single statement to propagate information across statements.

Constant Propagation: Rule 4

If $\operatorname{Cout}\left(X, p_{j}\right)=\#$ for all j, then $\operatorname{Cin}(X, s)=\#$

Last modified: Wed Apr 20 22:55:29 2011

Constant Propagation: Rule 5

$$
\operatorname{Cout}(X, s)=\# \text { if } \operatorname{Cin}(X, s)=\#
$$

The value '\#' means "so far, no value of X gets here, because the we don't (yet) know that this statement ever gets executed."

Constant Propagation: Rule 6

$\operatorname{Cout}(X, X:=c)=c$ if c is a constant and ? is not \#.

Constant Propagation: Rule 8

$\operatorname{Cout}(X, Y:=\ldots)=\operatorname{Cin}(X, Y:=\ldots)$ if X and Y are different variables.

Constant Propagation: Rule 7

$\operatorname{Cout}(X, X:=f(\ldots))=*$ for any function call, if ? is not $\#$.

Propagation Algorithm

- To use these rules, we employ a standard technique: iteration to a fixed point:
- Mark all points in the program with current approximations of the variable(s) of interest (X in our examples).
- Set the initial approximations to $X=$ * for the program entry point and $X=\#$ everywhere else.
- Repeatedly apply rules 1-8 every place they are applicable until nothing changes-until the program is at a fixed point with respect to all the transfer rules.
- We can be clever about this, keeping a list of all nodes any of whose predecessors' Cout values have changed since the last rule application.

An Example of the Algorithm

So we can replace X with 3 in the bottom block.

A Third Example

Likewise, we cannot replace X .

Ordering the Abstract Domain

- We can simplify the presentation of the analysis by ordering the values \# $<c<*$.
- Or pictorially, with lower meaning less than,

- ... a mathematical structure known as a lattice.
- With this, our rule for computing Cin is simply a least upper bound: $\operatorname{Cin}(x, s)=\operatorname{lub}\{\operatorname{Cout}(x, p)$ such that p is a predecessor of $s\}$.

Last modified: Wed Apr 20 22:55:29 2011
CS164: Lecture \#37 25

Liveness Analysis

Once constants have been globally propagated, we would like to eliminate dead code

After constant propagation, $\mathrm{X}:=3$ is dead code (assuming this is the entire CFG)
Last modified: Wed Apr 20 22:55:29 2011
CS164: Lecture \#37 27

Termination

- Simply saying "repeat until nothing changes" doesn't guarantee that eventually nothing changes.
- But the use of lub explains why the algorithm terminates:
- Values start as \# and only increase
- By the structure of the lattice, therefore, each value can only change twice.
- Thus the algorithm is linear in program size. The number of steps
$=2 \times$ Number of Cin and Cout values computed
$=4 \times$ Number of program statements.

Terminology: Live and Dead

- In the program

$$
\mathrm{X}:=3 ; \quad / *(1) * / \quad \mathrm{X}=4 ; \quad / *(2) * / \quad \mathrm{Y}:=\mathrm{X} \quad / *(3) * /
$$

- the variable X is dead (never used) at point (1), live at point (2), and may or may not be live at point (3), depending on the rest of the program.
- More generally, a variable x is live at statement s if
- There exists a statement s ' that uses $x ;$
- There is a path from s to s'; and
- That path has no intervening assignment to x
- A statement $x:=\ldots$ is dead code (and may be deleted) if x is dead after the assignment.

Computing Liveness

- We can express liveness as a function of information transferred between adjacent statements, just as in copy propagation
- Liveness is simpler than constant propagation, since it is a boolean property (true or false).
- That is, the lattice has two values, with false<true.
- It also differs in that liveness depends on what comes after a statement, not before-we propagate information backwards through the flow graph, from Lout (liveness information at the end of a statment) to Lin.

Liveness Rule 2

Lout $(X, s)=$ true if s uses the previous value of X.

- The same rule applies to any other statement that uses the value of X, such as tests (e.g., $\mathrm{X}<0$).

Liveness Rule 1

- So
$\operatorname{Lout}(x, p)=\operatorname{lub}\{\operatorname{Lin}(x, s)$ such that s is a predecessor of $p\}$.
- Here, least upper bound (lub) is the same as "or".

Last modified: Wed Apr 20 22:55:29 2011
CS164: Lecture \#37 30

Liveness Rule 3

Lout $(X, X:=e)=$ false if e does not use the previous value of X.

Liveness Rule 4

$\operatorname{Lout}(X, s)=\operatorname{Lin}(X, s)$ if s does not mention X.

Propagation Algorithm for Liveness

- Initially, let all Lin and Lout values be false.
- Set Lout value at the program exit to true iff x is going to be used elsewhere (e.g., if it is global and we are analyzing only one procedure).
- As before, repeatedly pick swhere one of 1-4 does not hold and update using the appropriate rule, until there are no more violations.
- When we're done, we can eliminate assignments to X if X is dead at the point after the assignment.

Example of Liveness Computation

Termination

- As before, a value can only change a bounded number of times: the bound being 1 in this case.
- Termination is guaranteed
- Once the analysis is computed, it is simple to eliminate dead code, but having done so, we must recompute the liveness information.

SSA and Global Analysis

- For local optimizations, the single static assignment (SSA) form was useful.
- But applying it to a full CFG is requires a trick.
- E.g., how do we avoid two assignments to the temporary holding x after this conditional?

```
if a > b:
    \(\mathrm{x}=\mathrm{a}\)
else:
    \(\mathrm{x}=\mathrm{b}\)
\# where is x at this point?
```

- Answer: a small kludge known as ϕ "functions"
- Turn the previous example into this:

$$
\text { if } a>b:
$$

$\mathrm{x} 1=\mathrm{a}$
else:
$\mathrm{x} 2 \mathrm{=} \mathrm{~b}$
$\mathrm{x} 3=\phi(\mathrm{x} 1, \mathrm{x} 2)$
Last modified: Wed Apr 20 22:55:29 2011

ϕ Functions

- An artificial device to allow SSA notation in CFGs.
- In a basic block, each variable is associated with one definition,
- ϕ functions in effect associate each variable with a set of possible definitions.
- In general, one tries to introduce them in strategic places so as to minimize the total number of ϕs.
- Although this device increases number of assignments in IL, register allocation can remove many by assigning related IL registers to the same real register.
- Their use enables us to extend such optimizations as CSE elimination in basic blocks to Global CSE Elimination.
- With SSA form, easy to tell (conservatively) if two IL assignments compute the same value: just see if they have the same right-hand side. The same variables indicate the same values.

Summary

- We've seen two kinds of analysis:
- Constant propagation is a forward analysis: information is pushed from inputs to outputs.
- Liveness is a backwards analysis: information is pushed from outputs back towards inputs.
- But both make use of essentially the same algorithm.
- Numerous other analyses fall into these categories, and allow us to use a similar formulation:
- An abstract domain (abstract relative to actual values);
- Local rules relating information between consecutive program points around a single statement; and
- Lattice operations like least upper bound (or join) or greatest lower bound (or meet) to relate inputs and outputs of adjoining statements.

