
CS172 Computability & Complexity, Spring 2009

Homework 2

Out: 5 Feb, 2009
Due: 12 Feb., 2009

Note: Not all questions are of equal difficulty. Questions marked with an asterisk (*) are to be handed in. The others
are for practice and will not be graded. Put your solutions tothe (*) problems in the homework box on Soda level 2
by 4pm on the due date. Take time to writeclearand conciseanswers; confused and long-winded solutions will be
penalized. You are allowed to work in small groups to discussthe homework and gain an understanding of what’s
involved, but your submitted solutions must be completely your own work. Depending on grading resources, we might
only grade a random subset of the required problems and simply check off the rest; so you are advised to attempt all
questions.

1. (*) An all-pathsNFA is defined in the same way as a standard NFA, except the definition of acceptance
is changed so that the machine accepts a stringw if and only if all possible computations on inputw

lead to accepting states. (In other words, ifanycomputation onw dies out or ends in a rejecting state,
the machine rejects; else it accepts.) Show that the class oflanguages accepted by an all-paths NFA
is exactly the class of regular languages. [HINT: One direction is obvious. For the other, think about
the construction we used to convert an NFA into a DFA.]

2. Show that regular languages are closed underreverse. The reverse of languageL is LR = {wR : w ∈
L}, where(w1 · · ·wn)R = wnwn−1 · · ·w1.

Show they are also closed under intersection; i.e., thatL1∩L2 = {w : w ∈ L1andw ∈ L2} is regular
if L1 andL2 are.

3. (*) Show that regular languages are closed undershuffle: for languagesL1 andL2 overΣ, their shuffle
is the language= {w : w = a1b1 · · · akbk, a1 · · · ak ∈ L1, b1 · · · bk ∈ L2 and eachai, bi ∈ Σ∗}.

4. Construct regular expressions that denote each of the following languages:

(a) The set of all words over the English alphabet that have “kk” as a substring. [NOTE: Use the
symbolΣ as shorthand for the regular expressiona∪b∪ . . .∪z, denoting the English alphabet.]

(b) (*) The set of all words over the English alphabet that begin with a vowel (i.e., with ‘a’, ‘e’, ‘i’,
‘o’ or ‘u’) and end in ‘ing’.

(c) The set of all words over the English alphabet that have atleast two k’s.

(d) (*) The set of all 0-1 strings in which the number of 1’s is divisible by three.

(e) The set of all words over the English alphabet that have aneven number of vowels and three
consonants.

(f) (*) The set of all 0-1 strings such that in any prefix, thereis at most one more 1 than 0’s and at
most one more 0 than 1’s. (x is a prefix ofw ∈ L if w = xy and|y| ≥ 1.

(g) The set of all words over the English alphabet that have a vowel in every odd position.

5. (*) Let R,S be arbitrary regular expressions. Which of the following statements are true? If the
statement is true, give a proof; if it is false, give a counterexample.

(a) (R ∪ S)∗ ≡ R∗ ∪ S∗; (b) (R∗)∗ ≡ R∗; (c) if R∗ ≡ S∗ thenR ≡ S.

NOTE: The symbol ‘≡’ denotesequivalenceof regular expressions:R ≡ S means thatL(R) = L(S)
(R andS denote the same language).

6. In the text, the construction of an NFA for the regular expressionR∗ from an NFA forR involves
adding a new start stateq′

0
with anǫ-transition to the old start stateq0 (and alsoǫ-transitions from all

accepting states toq0). Since the new NFA must accept the empty string, we makeq′
0

an accepting
state. Suppose we didn’t addq′

0
, but instead just made the old start stateq0 accepting (and added the

otherǫ-transitions intoq0 as before). Give a small example which shows that this simpler construction
does not always work correctly.

